建设项目环境影响报告表

(试行)

项目名称: 江门市江海区龙城展柜装饰设计有限公司年产展柜

1000 套建设项目

建设单位(盖章): 江门市江海区龙城展柜装饰设计有限公司

编制日期: 2020年8月

生态环境部制

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政许可法》、《建设项目环境影响评价政府信息公开指南(试行)》(环办【2013】 103号)、《环境影响评价公众参与办法》(生态环境部令第4号),特对环境影响评价文件(公开版)作出如下声明:

我单位提供的<u>江门市江海区龙城展柜装饰设计有限公司年产展柜</u> 1000 套建设项目 (项目环评文件名称)不含国家秘密、商业秘密和个人 隐私,同意按照相关规定予以公开。

法定代表人(签名)

年 月 日

本声明书原件交环保审批部门,声明单位可保留复印件

承诺书

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政许可法》、《建设项目环境影响评价资质管理办法》、《环境影响评价公众参与办法》(生态环境部令第 4 号),特对报批 <u>江门市江海区龙城展柜装饰设计有限公司年产展柜 1000 套建设项目</u>环境影响评价文件作出如下承诺:

- 1、我们承诺对提交的项目环境影响评价文件及相关材料(包括但不限于建设项目内容、建设规模、环境质量现状调查、相关检测数据、公众参与调查结果)真实性负责;如违反上述事项,在环境影响评价工作中不负责任或弄虚作假等致使环境影响评价文件失实,我们将承担由此引起的一切责任。
- 2、我们承诺提交的环境影响评价文件报批稿按照技术评估的要求修改完善,本报批稿的内容与经技术评估同意报批的版本内容完全一致,我们将承担由此引起的一切责任。
- 3、在项目施工期和营运期,严格按照环境影响评价文件及批复要求落实各项污染防治和风险事故防范措施,如因措施不当引起的环境影响或环境事故责任由建设单位承担。
- 4、我们承诺廉洁自律,严格按照法定条件和程序办理项目申请 手续,绝不以任何不正当手段干扰项目评估及审批管理人员,以保证 项目审批公正性。

建设单位(盖章)

法定代表人(签名

评价单位(盖章)

法定代表人(签名)

第703月 日

本承诺书原件交环保审批部门,承诺单位可保留复印件

建设项目环境影响报告表 编制情况承诺书

本单位 江门市佰博环保有限公司 (统一社会信用代码 91440700MA51UWJRXW) 郑重承诺: 本单位符合《建设项目环 境影响报告书(表)编制监督管理办法》第九条第一款规定, 无该条第三款所列情形, 不属于 (属于/不属于)该 条第二款所列单位;本次在环境影响评价信用平台提交的由本 单位主持编制的 江门市江海区龙城展柜装饰设计有限公司年 产展柜1000套建设项目项目环境影响报告书(表)基本情况信 息真实准确、完整有效,不涉及国家秘密:该项目环境影响报 告表的编制主持人为赵岚(环境影响评价工程师职业资格证书 管理号 07354443507440050, 信用编号_BH000024_), 主 要编制人员包括赵岚 (信用编号BH000024_)、__<u>江蕴怡</u>(信 用编号 BH000046) 、 (信用编号____) (依 次全部列出) 等2人, 上述人员均为本单位全职人员; 本单位 和上述编制人员未被列入《建设项目环境影响报告书(表)编 制监督管理办法》规定的限期整改名单、环境影响评价失信"黑 名单"。

承诺单位(公章):

E

编制单位和编制人员情况表

项目编号		784793						
建设项目名称		江门市江海区龙城居	江门市江海区龙城展柜装饰设计有限公司年产展柜1000套建设项目					
建设项目类别		18-036木质家具制造制造;其他家具制造	告; 竹、藤家具制造; 告	金属家具制造;塑料家具	Ĺ			
环境影响评价文件	 	报告表	8					
一、建设单位情况	兄	发展 股色表情。						
单位名称(盖章)		江门市江海区龙城展	在装饰设计有限公司					
统一社会信用代码	}	01440704MA4X7X8	Waxi					
法定代表人(签章	í)							
主要负责人(签字	<u>z</u>)		-					
直接负责的主管人	、员(签字)							
二、编制单位情况	兄	H. H.	植力		-			
単位名称(盖章)		江门市佰博环保有限公司						
统一社会信用代码	}	91440700MA51UWJ	91440700MA51UWJRXW					
三、编制人员情况	兄	0325784	12 12					
1. 编制主持人	ν.		and the state of t					
姓名	职业资格	各证书管理号	信用编号	签字				
赵岚	0735444	13507440050 BH000024		Zoh				
2 主要编制人员								
姓名	主要:	编写内容	信用编号	签字				
赵岚		况、建设项目所在地 会环境简况	BH000024	Z, L				
江蕴怡	环境质量状况、 项目工程分析、 及预计排放情况 设项目拟采取的 效果、	评价适用标准、建设 项目主要污染物产生 、环境影响分析、建 防治措施及预期治理 结论和建议	ВН000046	产工作				

人员参保历史查询

单位参保号	711900427622	单位名称	江门州福排环底有财公司
个人参保号		个人姓名	F F
性别	女	身份证	
- 9	基本养老 保险缴费记录		宜 间 专 用 草 江 古社会保险基金管理局

基太养老	保险缴费记录	
The Alexander	1000 DEAT 2007 TOP TOT 1000	я

业务类别 (区分缴 费、退费)	缴费类型 中文	参保身份	单位名称	开始年月	终止年月	月数	单位缴纳	个人缴纳	缴费基数
微费	正常核定	城镇职工	江门市环境科学研究所	200202	200206	5	1137, 15	324.90	1083.00
缴费	正常核定	城镇职工	江门市环境科学研究所	200207		1	222.60	63.60	1060.00
缴费	正常核定	城镇职工	江门市环境科学研究所	200208	200210	3	910, 35	260.10	1445.00
缴费	正常核定	城镇职工	江门市环境科学研究所	200211	200307	9	2601.00	910, 35	1445, 00
缴费	正常核定	城镇职工	江门市环境科学研究所	200308	200311	4	1156, 00	462, 40	1445.00
微费	正常核定	城镇职工	江门市环境科学研究所	200312	200406	7	1888, 60	755, 44	1349.00
缴费	正常核定	城镇职工	江门市环境科学研究所	200407	200508	14	4250, 54	1700.30	1518.07
缴费	正常核定	城镇职工	江门市环境科学研究所	200509	200606	10	1581.20	632, 50	790.60
缴费	正常核定	城镇职工	江门市环境科学研究所	200607	200706	12	1791.00	795. 96	829.14
缴费	正常核定	城镇职工	江门市环境科学研究所	200707	200806	12	2193, 00	1032.00	1075.00
缴费	正常核定	城镇职工	江门市环境科学研究所	200807	200906	12	2312, 40	1088, 16	1133, 50
缴费	正常核定	城镇职工	江门市环境科学研究所	200907	201008	14	2750, 16	1294.16	1155.50
缴费	正常核定	城镇职工	江门市环境科学研究所	201009	201101	5	948.80	474, 40	1186.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201102	201106	5	1042, 40	521, 20	1303, 00
缴费	正常核定	城镇职工	江门市环境科学研究所	201107	201406	36	9261.00	4939, 20	1715.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201407	201412	6	1668, 42	1026, 72	2139.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201501	201506	6	1878, 24	1155.84	2408.00
微费	正常核定	城镇职工	江门市环境科学研究所	201507	201609	15	5089, 50	3132.00	2610.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201610	201706	9	3400, 02	2092.32	2906.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201707	201712	6	2091.96	1287.36	2682.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201801	201806	6	2266, 68	1394.88	2906.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201807	201906	12	4836, 00	2976.00	3100.00
缴费	正常核定	城镇职工	江门市环境科学研究所	201907		1	438.88	270.08	3376,00
微费	正常核定	城镇职工	江门市佰博环保有限公司	201908	202001	6	2633, 28	1620, 48	3376.00
缴费	正常核定	城镇职工	江门市佰博环保有限公司	202002	202012	11	0.00	2970.88	3376.00
缴费	正常核定	城镇职工	江门市佰博环保有限公司	202101	202101	1	472.64	270.08	3376.00
					合计	228	58821, 82	33451, 31	

打印流水号: wi51566567 打印时间: 2021-01-12 11:15

可登录 http://wssb.jiangmen.cn/PrintVerify.aspx 进行验证

本证书由中华人民共和国人事部和国家 环境保护总局批准颁发、它表明特征人通过 国家统一组织的考试, 取得环境影响评价工 程师的职业资格。

This is to certify that the bearer of the Certificate has passed national examination organized by the Chinese government departments and has obtained qualifications for Environmental Impact Assessment Engineer.

The People's Republic of China

编号: No.:

0006704

持证人签名: Signature of the Bearer

管理号: 07854443507440050 File No.:

姓名: 赵岚 Full Name 性别: 女 Sex 出生年月: Date of Birth 1979年08月 专业类别; Professional Type 批准日期: Approval Date 2007 105 / 13 [] 签发单位盖章 Issued by

答发日期: 2000

Issued on

Hill

(副本号:1-1)

古指二维岛路域, 国际企业指用输助 公示系统"一篇政 矽斯门、全殊、许 四、指挥信息。

人民币叁佰万元 H

烟

串

州

2018年06月19日 眾 Ш 村 出

枸田 年

江门市蓬江区皇庄大道西10号6幢3 01室3-320,321 水路 出 殿 题 計

米 拉 识 树

市场主体应当于每年 1月1日 至 6月30日通过国家企业信用信息公示系统报送公示年度报告

国家市场监督管理总局监制

画

91440700MA51UWJRXW 统一社会信用代码

江门市街樽环保有限公司 於

如

有限责任公司(自然人投资或控股) 酬

米

被逐 法定代表人 丰间 松

 环境影响评价、环保工程、环保技术卷询服务、工程环境监理、环境治理技术信息各询、土壤环境评估与核复;建设项目竣工环境保护器收;环境检测、清洁生产技术咨询、突发环境等件应急预案编制、销售:环保设备及其零配件。《依法须经批准的项目,经相关部门批准后方可开展经营活动。》■ 囲 热

国家企业信用信息会示系统网址: http://www.gsxt.gov.cn

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1. 项目名称——指项目立项批复时的名称,应不超过 30 个字(两个英文字段作一个汉字)。
 - 2. 建设地点——指项目所在地详细地址,公路、铁路应填写起止地点。
 - 3. 行业类别——按国标填写。
 - 4. 总投资——指项目投资总额。
- 5. 主要环境保护目标——指项目区周围一定范围内集中居民住宅区、 学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能 给出保护目标、性质、规模和距厂界距离等。
- 6. 结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
- 7. 预审意见——由行业主管部门填写答复意见,无主管部门项目,可不填。
 - 8. 审批意见——由负责审批该项目的环境保护行政主管部门批复。

目录

— ,	建设项	页目基本情况	1
=,	建设项	页目所在地自然环境社会环境简况	8
三、	环境质	5量状况	9
四、	评价足	5用标准	17
五、	建设项	页目工程分析	20
		· · · · · · · · · · · · · · · · · · ·	
		·响分析	
		页目拟采取的防治措施及预期治理效果	
九、	结论与	5建议	50
附图]		
	附图 1	项目地理位置图	
	附图 2	项目四至图	
	附图 3	项目平面布置图	
	附图 4	项目敏感点分布图	
	附图 5	大气环境功能区划图	
	附图 6	生态分级控制图	
	附图 7	地表水功能区域图	
	附图 8	声环境功能区划图	
	附图 9	江门市城市总体规划图	
	附图 10	江海污水处理厂纳污范围图	
附付	件		
	附件 1	营业执照	
	附件 2	法人代表身份证	
	附件 3	土地证	
	附件4	租赁合同	
	附件 5	项目引用监测报告	
	附件 6	项目相关原料检测报告	
	附件 7	修改意见对照表	

一、建设项目基本情况

项目名称	江门市江海区龙城展柜装饰设计有限公司年产展柜 1000 套建设项目							
建设单位		江广	门市江海	区龙	成展柜装	麦饰	设计有限公	司
法人代表		范**			联系	Λ.		
通讯地址		汇	工门市江	海区:	比苑路 1	号	3 幢自编 B1	
联系电话			传真		/		邮政编码	529000
建设地点	(‡	江门市江海区北苑路 1 号 3 幢 (地理位置中心坐标: N22.568779°, E113.166752°)						
立项审批 部门		/		批准	主文号		/	
建设性质	新建团改扩	新建☑改扩建□技改□			L类别 代码		2110 木质家具制造	
占地面积 (平方米)	2000			筑面积 方米)		3500		
总投资 (万元)	100	l	环保投 万元)		34	l	保投资占总 投资比例	34%
评价经费 (万元)	0.8		投产	二日期	2020年10月		年 10 月	

一、项目由来

江门市江海区龙城展柜装饰设计有限公司投资 100 万元,选址于江门市江海区北苑路 1 号 3 幢(地理位置中心坐标: N22.568779°, E113.166752°)从事展柜的生产加工,项目占地面积 2000 平方米,建筑面积 3500 平方米,产品方案为年产展柜 1000套。

根据《中华人民共和国环境影响评价法》(2018 年修订版)、国务院第 682 号令《国务院关于修改〈建设项目环境保护管理条例〉的决定》的有关规定,一切可能对环境造成影响的新建、扩建或改建项目必须实行环境影响评价审批制度,以便能有效的控制新的污染和生态破坏,保护环境、利国利民。根据《建设项目环境影响评价分类管理名录》(2021 年),本项目属于"十八、家具制造业 36 木质家具制造 其他",故应按要求编制环境影响报告表。

为此,建设单位委托我司承担该项目环境影响评价工作。接受委托后,我公司组织有关技术人员进行现场踏勘、收集资料,依据国家有关法规文件和环境影响评价技术导则,编制了该项目环境影响报告表。

二、项目工程内容及规模

1、项目建设组成

本项目利用已建成厂房进行建设运营,总占地面积为 2000 平方米,建筑面积 3500 平方米。项目工程内容包括主体工程、辅助工程、公用工程以及环保工程。

项目建设的建、构筑物情况见下表。

表 1-1 项目建筑物情况一览表

建筑物名称	占地面积 (m²)	层数	建筑面积 (m²)	备注	
厂房	2000	两层	3500	一层包括开料区、雕刻区、钻孔区、 封边区、打磨房、喷涂房和晾干房	
, ,,,	2000	1 4/2	3300	二层包括开料区、焊接区、贴皮区	
合计	2000		3500		

表 1-2 项目建设的工程组成表

工程	名称	内容		
主体工程	生产车间	生产展柜,面积约3500平方米		
	供水工程	由市政管网供水,主要为员工生活用水和生产用水		
		生活污水经化粪池预处理后进入江海污水处理厂		
公用工程	排水工程	水帘柜废水、喷淋废水循环使用;喷涂废气的水帘柜废 水和喷淋废水一年清理两次		
	供电工程	由当地供电所供电		
	废水处理设施	生活污水经化粪池预处理后进入江海污水处理厂		
	及小处垤以爬	水帘柜和喷淋废水外运交由零散废水处理单位处理		
		打磨粉尘经过水喷淋处理后通过 15m 排气筒 (G2) 排 放		
	废气处理设施	木质粉尘经过布袋除尘处理后车间无组织排放		
环保工程	/ / / / / / / / / / / / / / / / / / /	组装、封边和经水帘柜处理后的喷涂废气经过喷淋+UV		
		光解+活性炭吸附处理后与经过 UV 光解+活性炭吸附		
		处理后的贴皮废气一同通过 15m 排气筒 (G1) 排放		
	噪声处理措施	使用低噪音设备,加强设备维护、距离衰减、建筑隔声		
		员工生活垃圾交由环卫部门统一清运处理		
	固废处理设施	一般工业固废交由废品回收单位回收处理		
		危险废物交由有资质单位回收处理		

2、原材料消耗及产品情况

项目主要的原辅材料、产品详细情况分别见表1-3、表1-5。

表1-3 项目原辅材料情况一览表

序-	号	名称	用量	单位

1	木工胶	4	吨/年
2	铁材 (配件)	2	吨/年
3	木材	360	立方米/年
4	水性漆	4	吨/年
5	人造皮革	1000	平方米
6	玻璃胶	4	吨/年
7	焊丝	0.01	吨/年
8	热熔胶	1	吨/年
9	玻璃	2	吨/年

理化性质如下:

热熔胶: 纯白圆颗粒,树脂味,主要成分为 EVA(聚乙烯-醋酸乙烯共聚树脂)、 碳酸钙、树脂、抗氧化剂等。

木工胶: 白色粘稠液体,其主要成份为聚乙酸乙烯酯 50-55%、水 30-35%、其他 0-5%。常温下稳定。

水性漆:白色粘稠液体,主要成分为丙烯酸酯共聚物、无铅颜料、添加剂和水。 以水作溶剂或者作分散介质的涂料,漆膜丰满、晶莹透亮、柔韧性好并且具有耐水、 耐磨、耐老化、耐黄变、干燥快、使用方便等特点。

玻璃胶:主要成分为羟基聚二甲基硅氧烷、填料、色料和酸性硅烷交联剂,膏状, 颜色有透明、银灰、酸黑、酸白。

水性漆的用量按以下公式核实:

 $m = \rho \delta S * 10^{-6} / (NV \epsilon)$

其中: m-涂料总用量(t/a)。

ρ-涂料密度 (g/cm³), 项目涂料密度 1.4 g/cm³。

S-涂装总面积 (m²/a)。

δ-涂层厚度(μ m)。

NV-涂料中的体积固体份(%),根据建设单位提供资料,水性漆固含量约为78%。

ε-上漆率,参考《广东省表面涂装(汽车制造业)挥发性有机废气治理技术指南》粤环〔2015〕4号〕,喷涂涂料利用率约为60-70%,本项目取值60%计算。项目涂料核算见表1-4。

表 1-4 项目涂料用量核实

涂料	油漆用途	涂层厚度(um)	喷涂面积 (m²/a)	涂料密度 (g/cm³)	涂料固含量(%)	上漆率 (%)	理论所需 量 t/a	水性漆申 报用量 (t/a)
水性漆	底漆	45	9650	1.4	78	60	1.30	1
小性 徐	面漆	90	9650	1.4	78	60	2.60	4

经核算,项目所申报的涂料用量与理论计算值基本一致。

项目主要产品见表 1-5:

表1-5 项目主要产品产量一览表

序号	产品		产品		产品		年产量	单位
		展柜	1000	套				
1	其中	柜台类	800	套				
	共宁	墙身类	200	套				

注:柜台类尺寸为 1.83m*0.57m*0.95m、1.39m*0.57m*0.95m、0.95m*0.57m*0.95m,墙身类尺寸为 2.6m*0.4m*1.55m。根据建设提供资料,柜台类喷涂面积约 6650m²,墙身类喷涂面积约 3000m²,合计喷涂面积约 9650m²。

3、主要生产设备情况

项目主要生产设备情况一览表详见表 1-6。

表 1-6 项目主要设备一览表

序号	设备名称	型号	数量(个/台)	用途
1	电子开料机	郑太 ZT2700	1	
2	台锯	MJ6130B	5	开料
3	锯边机	博大 M8-255	5	
4	封边机	兴发 XA-5	1	封边
5	雕刻机	MK4H	1	雕刻
6	钻孔机	创强 Z516	2	钻孔
7	氩弧焊	焊驰 WS-250	2	焊接
8	气动磨机	田风 C1025	6*	打磨
9	喷漆房*	8m*3m	1	喷漆
10	(电) 烘干炉	SU304	1	烘干

注: 其中一台为备用; 喷漆房内设6把喷枪, 配套设置水帘柜容水量4m3。

4、劳动定员和工作制度

- (1) 工作制度:项目全年工作300天,一班制,每班8小时。
- (2) 劳动定员:项目员工20人,厂区不设食宿。

5、公用配套工程

- (1)给水:项目给水水源为市政管网给水,用水主要员工生活用水以及生产用水。员工生活用水约为 240m³/a,生产用水为水帘柜和喷淋设备补充用水,水帘柜补充用水约 12m³/a, 合计生产用水为 24m³/a,则总用新鲜水量为 264m³/a。
- (2) 排水:项目生产废水为喷淋水和水帘柜废水,生产废水循环使用,其中喷涂的水帘柜和喷淋废水定期外排,作为危废,交给有资质单位回收处理,生活污水经化粪池处理后进入江海污水处理厂。
 - (3)供电:项目供电由市政电网统一供给,预计年用电量约30万kw·h。

6、政策符合性分析

(1) 产业政策

本项目为展柜生产加工项目,不属于《产业结构调整指导目录》(2019年本)和《市场准入负面清单》(2020年本)中的限制类和淘汰类产业。因此,本项目符合国家和地方产业政策。

(2) 规划相符性

本项目位于江门市江海区北苑路 1 号 3 幢,用地证件证号:粤房地权证江门字第 0112058711 号,规划用途为非住宅,根据《江门市城市总体规划图》,项目所用地土地性质为物流仓储用地,根据江门市江海区自然资源局出局《关于对江门市欧宁照明灯饰有限公司《申请函》的复函》(江海自然资函[2020]1254 号),同意该用地暂按二类工业用地使用,土地使用合法,符合土地利用规划。

根据《江门市环境保护规划(2006-2020年)》,项目所在区域为二类环境空气质量功能区,执行《环境空气质量标准》(GB3095-2012及 2018年修改单)二级标准。项目位于江海污水处理厂纳污范围内,江海污水处理厂纳污水体为麻园河,根据《关于江门市江海区麻园河、马鬃沙河水环境质量执行标准的复函》(江环函[2010]48号),麻园河属V类水,执行《地表水环境质量标准》(GB3838-2002)V类水质标准。根据《江门市声环境功能区划》(江环[2019]378号),项目所在区域为3类功能区,执行《声环境质量标准》(GB3096-2008)中3类标准;根据《广东省地下水功能规划图》,项目选址属于珠江三角洲江门新会不宜开发区(代码 H074407003U01),执行《地下水水质量标准》(GB/T14848-2017)V类标准。项目选址不属于废水、废气

和噪声的禁排区域,因此项目选址是符合相关规划要求的。

(3) 环保政策相符性

《江门市打赢蓝天保卫战实施方案(2019—2020年)》: 重点推广使用低 VOCs含量、低反应活性的原辅材料和产品,到 2020年,印刷、家具制造、工业涂装重点工业企业的低毒、低(无)VOCs含量、高固份原辅材料使用比例大幅提升。

《挥发性有机物(VOCs)污染防治技术政策》(环保部公告 2013 第 31 号):"根据涂装工艺的不同,鼓励使用水性涂料、高固体涂料、粉末涂料、紫外光固化(UV)涂料等环保型涂料。含 VOCs产品的使用过程中,应采取废气收集措施,提高废气收集效率,减少废气的无组织排放与逸散,并对收集后的废气进行回收或处理后达标排放。"

《广东省挥发性有机物(VOCs)整治与减排工作方案(2018-2020年)》:推广使用高固份、粉末涂料,到 2020 年年底前,使用比例达到 30%以上;试点推行水性涂料。积极采取自动喷涂、静电喷涂等先进涂料技术。加强有机废气收集与治理,有机废气收集率不低于 80%,建设吸附燃烧等高处理设施,实现达标排放。

《江门市挥发性有机物(VOCs)整治与减排工作方案(2018~2020 年)》: "推广使用高固份、粉末涂料,到 2020 年年底前,使用比例达到 30%以上;试点推行水性涂料。积极采取自动喷涂、静电喷涂等先进涂料技术。加强有机废气收集与治理,有机废气收集率不低于 80%,建设吸附燃烧等高处理设施,实现达标排放"

《关于印发 2020 年挥发性有机物治理攻坚方案的通知》(环大气〔2020〕33 号): "大力推进低(无) VOCs 含量原辅材料替代。""生产和使用环节应采用密闭设备,或在密闭空间中操作并有效收集废气。"

《重点行业挥发性有机物综合治理方案》(环大气〔2019〕53 号): "大力推进源头替代。通过使用水性、粉末、高固体分、无溶剂、辐射固化等低 VOCs 含量的涂料,水性、辐射固化、植物基等低 VOCs 含量的油墨,水基、热熔、无溶剂、辐射固化、改性、生物降解等低 VOCs 含量的胶粘剂,以及低 VOCs 含量、低反应活性的清洗剂等,替代溶剂型涂料、油墨、胶粘剂、清洗剂等,从源头减少 VOCs 产生。"

《广东省打赢蓝天保卫战实施方案(2018-2020年)》: "珠三角地区禁止新建生产和使高 VOCs 含量溶剂型涂料、油墨、胶粘剂、清洗剂等项目(共性工厂除外)。" "重点推广低 VOCs 含量、底反应活性的原辅材料和产品,到 2020 年,印刷、家具

制造、工业涂装重点工业企业的低毒、低(无)VOCs 含量、高固份原辅材料使用比例大幅提升。"

本项目使用水性漆,比例为 100%,根据附件中的检验报告可知,挥发性有机化合物含量为 40g/L,符合《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020)中水性涂料-木器涂料-色漆的 VOC 含量的要求: ≤220g/L。生产中使用胶粘剂为木工胶、热熔胶和玻璃胶。根据检验报告,木工胶总挥发性有机物含量为 21g/L,符合《胶粘剂挥发性有机化合物限量》(GB33372-2020)中水基型胶粘剂 VOC 含量-聚乙酸乙酯类-木工与家具领域: 100g/L 的要求,玻璃胶主要成分为羟基聚二甲基硅氧烷、填料、色料和酸性硅烷交联剂,热熔胶主要成分为 EVA(聚乙烯-醋酸乙烯共聚树脂)、碳酸钙、树脂、抗氧化剂,分别对应于《胶粘剂挥发性有机化合物限量》(GB33372-2020)中本体型-有机硅类和本体型-热塑类,根据《胶粘剂挥发性有机化合物限量》(GB33372-2020)中提及"通常水基型胶粘剂和本体型胶粘剂为低 VOC型胶粘剂",因此项目所用胶粘剂均为低 VOC型胶粘剂,符合文件要求。喷漆房和自然晾干房设置密闭,废气收集率能达到 90%以上,喷涂废气收集后采取水帘柜+喷淋+UV 光解+活性炭吸附处理,处理效率为 90%,处理后达到《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)Ⅱ时段标准要求后排放。因此,与相关环保政策相符。

(4) "三线一单"相符性

本工程对比生态保护红线、环境质量底线、资源利用上线和环境准入负面清单的符合性分析见表 1-7。

类别	项目与"三线一单"相符性分析	符合性
生态保护红线	根据广东省环境保护规划纲要(2006~2020年),本工程在 所在区域位于集约利用区,不属于生态红线区域。	符合
环境质量底线	本工程所在区域声环境符合相应质量标准要求,环境空气质量不达标,江门市已印发《江门市环境空气质量限期达标规划(2018-2020年)》,完善环境管理政策等大气污染防治强化措施,实行区域内 2020 年环境空气质量全面达标; 地表水环境质量不达标,为消除黑臭现象,江门市人民政府已印发了《江门市市区黑臭水体综合整治工作方案》(江办府[2016]23号)。本项目施工期仅为设备安装,对周边环境影响不明显; 本工程运营后对大气环境、水环境质量影响较小,	符合

表 1-7 "三线一单"符合性分析表

	可符合环境质量底线要求。			
	本工程施工期消耗少量电源、水资源等资源,资源消耗量相			
资源利用上线	对区域资源利用总量较少,符合资源利用上限要求。本工程	符合		
	运营后采用电能为能源,符合要求。			
环境准入负面	本工程不属于《市场准入负面清单》(2020年本)中的禁止	 符合		
清单	准入类和限制准入类。	打亩		
由上表可见,本工程符合"三线一单"的要求。				

三、与本项目有关的原有污染情况及主要环境问题

本项目位于江门市江海区北苑路 1 号 3 幢,项目北面为科杰达智能电器,西面为任行者户外运动用品,东面为剑乔科技电器有限公司,南面为厂房。

该项目主要环境问题为附近工业企业产生的工业"三废"、工厂员工产生的生活污水、生活垃圾,以及周边道路交通噪声及汽车尾气等污染物。项目四至示意图见附图2所示。

二、建设项目所在地自然环境简况

自然环境简况(地貌、地质、气候、气象、水文、植被、生物多样性等)

1、地理位置

江门市江海区位于广东省中南部,西江下游、珠江三角洲西侧,在北纬 22°29′39″至 22°36′25″,东经 113°05′50″至 113°11′09″之间,东隔西江与中山市相望,北靠蓬江区,西面和南面与新会区相连。

2、地质地貌

江门市江海区境内地势较平坦,除了北部有丘陵山地外,大部分为三角洲冲积平原。全境河道纵横交错。西江流经江海区北部和东部边境,江门河从东北向西南流经江海区北部和西部边境。地质情况较简单,为第四纪全新统,属三角洲海陆混合相沉积,侵入岩有分布于滘头—白水带—南大岗一带的加里东期混合花岗岩和分布于外海马山一带的黑云母花岗岩。低山丘陵地为赤红壤,围田区为近代河流冲积层,高地发育成潮沙土,低地发育成水稻土,土壤肥沃。

3、气候气象

江门市区地处北回归线以南,濒临南海,属南亚热带海洋性季风气候,常年气候温和湿润,多年平均气温 22.2 ℃;日照充分,雨量充沛,多年平均降雨量 1799.5 毫米,年平均相对湿度为 78%;冬季受东北季风影响,夏季受东南季风影响,多年平均风速 2.4 米/秒。每年 2~3 月有不同程度的低温阴雨天气,5~9 月常有台风和暴雨。

4、河流水文

江海区境内河道纵横交错,河水主要来自西江和江门河,还有境内的地表径流,并受从磨刀门和崖门上朔的南海潮波影响,潮汐为不规则半日潮。西江水主要从金溪间、石咀闸、横沥闸、横海南闸和石洲闸分别流入金溪河、下街冲、横沥河、中路河和石洲河。中路河向北在外海直冲村前进桥与横沥河汇合,向南通过二冲河与石洲河相连;江门河水从滘头三元闸流入小海河,流经固步闸进入麻园河;龙溪河与麻园河在马鬃沙头汇合进入马鬃沙河。项目位于江海污水处理厂纳污范围内,江海污水处理厂纳污水体为麻园河。

5、土壤植被

江海区的植被主要为保存良好的次生林和近年绿化种植的亚热带、热带树种,有湿地松、落羽杉、竹等,果树有柑、桔、橙、蕉、荔枝、龙眼等。

三、环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环 境、生态环境等)

序号	项目	类别
1	水环境功能区	根据《关于江门市江海区麻园河、马鬃沙河水环境质量执行标准的复函》(江环函[2010]48号),麻园河属V类区域,执行《地表水环境质量标准》(GB3838-2002)V类标准
2	环境空气质量功能区	根据《江门市环境保护规划》(2007年12月),项目属二类区域,执行《环境空气质量标准》(GB3095-2012)及其2018年修改单二级标准
3	声环境功能区	根据《江门市声环境功能区划》(江环[2019]378号), 项目属3类区域,执行《声环境质量标准》 (GB3096-2008)3类标准
4	地下水功能区	根据《广东省地下水功能区划》(粤办函[2009]459号),珠江三角洲江门新会不宜开发区(代码H074407003U01),执行《地下水水质量标准》(GB/T14848-2017)V类标准
5	是否基本农田保护区	否
6	是否风景名胜保护区	否
7	是否水库库区	否
8	是否污水处理厂集水范围	是(江海污水处理厂)
9	是否管道天然气管网区	否
10	是否酸雨控制区	是
11	是否饮用水水源保护区	否

表 3-1 建设项目环境功能属性表

根据《建设项目环境影响评价技术导则—地下水环境》(HJ610-2016)附录 A 地下水环境影响评价行业分类表,本项目行业类别为 2110 木制家具制造,对应的是 109、锯材、木片加工、家具制造中报告表类别,属于IV类项目,不开展地下水环境影响评价。

1、大气环境质量现状

项目所在区域为二类环境空气质量功能区,执行《环境空气质量标准》(GB3095-2012及 2018年修改单)二级标准。

根据《2019年江门市环境质量状况(公报)》,2019年细颗粒物(PM_{2.5})年平均浓度为27微克/立方米,同比下降6.9%;可吸入颗粒物(PM₁₀)年均浓度为49微克/立方米,同比下降3.9%;二氧化硫年均浓度为7微克/立方米,同比下降12.5%;二氧化氮年均浓度为32微克/立方米,同比持平;一氧化碳日均值第95百分位数浓度(CO-95per)为1.3毫克/立方米,同比上升18.2%;臭氧日最大8小时平均第90百分位数浓度(O₃-8h-90per)

为 198 微克/立方米,同比上升 17.9%;除臭氧外,其余五项空气污染物年均浓度均达到 国家二级标准限值要求。

表 3-2 江海区环境空气现状评价表

单位: μg/m³

							- μ. μg/III
	污染物	SO_2	NO ₂	PM ₁₀	PM _{2.5}	СО	O_3
项目	指标	年平均质 量浓度	年平均质 量浓度	年平均质 量浓度	年平均质 量浓度	日均浓度 第 95 位百 分数	日最大 8 小时均浓 度第 95 位 百分数
监测	则值	11	37	57	30	1200	182
标》		60	40	70	35	4000	160
占标率		18.33%	92.5%	81.43%	85.71%	30.00%	113.75%
达标情况		达标	达标	达标	达标	达标	不达标

本项目所在区域属于环境空气质量二类功能区,环境空气质量应执行《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值,可看出 2019 年江海区基本污染物中O3 日最大 8 小时平均浓度的第 90 百分位数未达到《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值,因此本项目所在评价区域为不达标区。

为改善环境质量,江门市已印发《江门市环境空气质量限期达标规划(2018-2020年)》,通过调整产业结构、优化工业布局;优化能源结构,提高清洁能源使用率;强化环境监管,加大工业园减排力度;调整运输结构,强化移动原污染防治;加强精细化管理,深化面源污染治理;强化能力建设,提高环境管理水平;健全法律法规体系,完善环境管理政策等大气污染防治强化措施,实行区域内2020年环境空气质量全面达标,环境空气质量指标能稳定达到《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值。

为进一步了解项目 TSP、TVOC 环境空气质量现状,引用于 2019 年 4 月 11 日-17 日 《江门市鑫辉密封科技有限公司迁扩建项目环境影响报告书》(批复号:江江环审[2019]32 号)的委托佛山市科信检测有限公司于项目所在地监测数据。监测数据如下表所示。

表 3-3 其他污染物引用监测点位基本信息

	监测点	监测点坐标/m		监测时段	相对厂址	相对厂界距
血侧总石物	X	Y	监测因子	三	方位	离/m
江门市鑫辉密			TSP	2019.4.11-2019.4.17		
封科技有限公	526	414	151	(2: 00-22: 00)	<i>t</i> ±	5.45
司迁扩建项目	526	-414	TWOC	2019.4.11-2019.4.17	东南	547
所在地			TVOC	(8: 00-16: 00)		

表 3-4 其他污染物监测结果表									
监测点位	监测点坐 标/m		下染物 平均 时间	评价标准/	监测浓 度范围/	最大浓度 占标率/%	超标 率/%		
	X	Y		ին լեն	(μg/m³)	$(\mu g/m^3)$	口1小平//0	'' ' / /0	月がし
江门市鑫辉密 封科技有限公	506	41.4	TSP	24h	300	136-263	87.7	/	达标
司迁扩建项目 所在地	526	-414	TVOC	8h	600	110-155	25.8	/	达标

根据表 3-4 监测结果,TSP 监测结果达到《环境空气质量标准》(GB3095-2012)及 其修改单二级浓度限值,TVOC 监测结果达到《环境影响评价技术导则-大气环境》 (HJ2.2-2018) 附录 D 其他污染物空气质量浓度参考限值。

2、水环境质量现状

项目属江海污水厂纳污范围,外排废水排入江海污水厂处理,经处理后尾水排入麻园河,麻园河执行《地表水环境质量标准》(GB3838-2002)V类水质标准。参考项目《励福(江门)环保科技股份有限公司年拆解 3000 吨微型计算机、3500 吨电话单机和 3500 吨移动通信手持机扩建项目环境影响报告书》(批复为江海环审[2018]84号)中广东新创华科环保股份有限公司于 2018 年 4 月 25 日-27 日的监测报告,监测具体位置见表 3-5,监测数据见表 3-6。

表3-5 监测断面具体位置说明

断面编号	说明
W1	江门市江海污水处理厂排污口上游500m
W2	江门市江海污水处理厂排污口

表 3-6 麻园河水质现状监测结果

单位: mg/L (水温、pH 除外)

项目	采样日期	潮汐情况	W1	W2	标准限值
	2010 04 25	涨潮	18.4	18.5	
	2018.04.25	退潮	23.6	22.8	
水温	2019 04 26	涨潮	17.8	17.5	,
(°C)	2018.04.26	退潮	23.4	22.5	/
	2018.04.27	涨潮	17.6	17.8	
		退潮	22.4	22.8	
pH 值	2018.04.25	涨潮	7.24	7.16	
		退潮	7.20	7.18	6-9
	2018.04.26	涨潮	7.24	7.36	

		退潮	7.22	7.32		
		涨潮	7.19	7.24		
	2018.04.27	退潮	7.21	7.18		
	20	涨潮	41	34		
	8.04.25	退潮	30	43		
		涨潮	35	39		
化学需氧量	2018.04.26	退潮	32	43	≤40	
		涨潮	41	37		
	2018.04.27	退潮	26	36		
		涨潮	1.8	11.0		
	2018.04.25	退潮	9.2	12.7		
 五日生化需氧	2010.01.26	涨潮	8.7	10.9	11.0	
量	2018.04.26	退潮	9.6	13.2	≤10	
	2010.01.25	涨潮	11.7	10.3		
	2018.04.27	退潮	7.7	10.1		
	2010.04.25	涨潮	56	34		
	2018.04.25	退潮	42	58		
目 ※ Mm	2018.04.26	涨潮	47	50	<150	
悬浮物		退潮	43	40	≤150	
	2018.04.27	涨潮	35	27		
		退潮	33	55		
	2019 04 25	涨潮	4.46	4.16		
	2018.04.25	退潮	4.62	4.12		
溶解氧	2018.04.26	涨潮	4.36	4.08	≥2	
117 11年 丰1	2016.04.20	退潮	4.8	4.7	22	
	2018.04.27	涨潮	4.18	4.52		
	2016.04.27	退潮	4.18	4.12		
	2018.04.25	涨潮	6.77	6.76		
	2010.04.23	退潮	6.96	3.45		
氨氮	2018.04.26	涨潮	5.31	4.99	≤2.0	
女(灰(2010.04.20	退潮	4.97	4.10		
	2018.04.27	涨潮	5.65	5.49		
	2010.04.27	退潮	3.40	3.99		
	2018.04.25	涨潮	0.06	0.09		
石油类	2010.U T .23	退潮	0.09	0.08		
	2018.04.26	涨潮	0.17	0.21	≤1.0	
7月1四大	2010.UT.2U	退潮	0.14	0.07		
	2018.04.27	涨潮	0.09	0.19		
	2010.UT.2/	退潮	0.19	0.15		

	2018.04.25	涨潮	0.79	0.65	
	2016.04.23	退潮	0.76	0.24	
总磷	2018.04.26	涨潮	0.94	0.44	<0.4
心 194	2018.04.20	退潮	0.94	0.91	≤0.4
	2019 04 27	涨潮	0.26	0.63	
	2018.04.27	退潮	0.82	0.96	
	2019 04 25	涨潮	0.05L	0.05L	
	2018.04.25	退潮	0.05L	0.05L	≤0.3
阴离子表面活	2018.04.26	涨潮	0.05L	0.05L	
性剂		退潮	0.05L	0.05L	
	2018.04.27	涨潮	0.05L	0.05L	
		退潮	0.05L	0.05L	
	2010 04 25	涨潮	8.44×10 ⁶	6.32×10 ⁶	
	2018.04.25	退潮	7.24×10 ⁶	1.70×10 ⁵	
粪大肠菌群 (个/L)	2018.04.26	涨潮	4.48×10 ⁶	8.99×10 ⁶	<10000
	2010.04.20	退潮	6.04×10 ⁶	6.90×10 ⁴	≤40000
	2018.04.27	涨潮	1.16×10 ⁵	8.79×10 ⁶	
	2010.0 4 .2/	退潮	4.24×10 ⁶	4.23×10 ⁵	

由监测结果统计分析可见,麻园河评价河段水质指标中 COD_{Cr}、BOD₅、氨氮、总磷、 粪大肠菌群均不能达到《地表水环境质量标准》(GB3838-2002)V 类标准,其他水质指 标能达到《地表水环境质量标准》(GB3838-2002)V 类标准,说明麻园河水质未能达标, 其主要是受所在区域农业污染影响所致。针对麻园河水质超标,江门市人民政府印发了《江 门市市区黑臭水体综合整治工作方案》(江办府[2016]23 号)。

3、声环境质量现状

根据《江门市声环境功能区划》,项目所在地属于3类功能区,执行《声环境质量标准》(GB3096-2008)3类标准:昼间噪声值标准为65dB(A),夜间噪声值标准为55dB(A)。

根据《2019年江门市环境质量状况(公报)》,江门市区昼间区域环境噪声等效声级平均值56.98分贝,优于国家声环境功能区2类区(居住、商业、工业混杂)昼间标准; 道路交通干线两侧昼间噪声质量处于较好水平,等效声级为69.94分贝,符合国家声环境功能区4类区昼间标准(城市交通干线两侧区域)。

4、生态环境质量现状

该项目地块处于人类活动频繁区,是	无原始植被生长和珍贵野生动物活动,	区域生态系
统敏感程度较低。		

主要环境保护目标(列出名单及保护级别):

本项目周围没有需要特殊保护的重要文物,因此,主要环境保护目标是保护好 当地的大环境,要采取有效的环保措施,使本项目在营运过程中,不会影响项目所 在区域的环境空气质量、水环境质量和声环境质量。

1、环境空气保护目标

环境空气保护目标是确保项目所在地环境空气质量达到国家《环境空气质量标准》(GB3095-2012 及 2018 年修改单)二级标准要求。

2、水环境保护目标

水环境保护目标是确保项目所在区域纳污水体麻园河的水质不因建设项目运营 而有所下降,保护该区域水环境质量。

3、声环境保护目标

声环境保护目标是确保该项目四周声环境质量不因项目的运行而受到不良影响。声环境质量符合《声环境质量标准》(GB3096-2008)3 类区标准。

4、环境敏感点保护目标

本项目主要环境敏感保护目标见表 3-7。

表 3-7 项目环境敏感点统计表

名称	坐标	(m)	保护对	保护内容	环境功能区	相对厂	相对厂界距
	X	Y	象			址方位	离/ (m)
期尾	-337	801		约 150 人		西北	847
塘冲围	-496	1131		约 1100 人		西北	1218
七东村	-600	1551		约 500 人		西北	1642
四十亩	-238	1004		约 600 人		西北	1016
常兴村	-1367	1465		约 400 人		西北	1970
外海墟	-1480	1826	居民区	约 1700 人	大气二类区	西北	2320
镇社区	-1400	1020	70 202	23 1700 /		2340	2320
直冲村	-1070	2239		约 2600 人		西北	2451
龙溪新	-446	2088		约 3900 人		西北	2124
城	110	2000		2,33007			2121
彩虹社区	-240	2292		约 13000 人		北	2292

居民区	101	1929		约 250 人		北	1915
変聪花 园	706	1447		约 7600 人		东北	1580
悦海轩	232	1220		约 530 人		东北	1219
江悦城	-1317	-1776		在建楼盘		西南	2176
信义家 园	1351	-2024		约 2000 人		东南	2404
中东村	554	-1379		约 900 人		南	1465
中港英 文学校	312	1237		约 3000 人		东北	1255
外海中 学	-2020	2417		约 3200 人		西北	3117
中东幼 儿园	342	-1996	学校	约 500 人		南	2024
中路小学	341	-2033		约 800 人		南	2047
中东小学	543	-2263		约 800 人		南	2310
西江					II类水	东	1424
龙溪河					IV类水	西	1440
麻园河			河流		V 类水	西南	2693
马鬃沙 河			N F Last		V类水	西南	2116

注:X、Y坐标系以项目中心为原点建立,以正北方向为Y轴正方向建立Y轴,以东方向为X轴的正方向建立X轴。

四、评价适用标准

1、环境空气质量标准

项目所在区域执行《环境空气质量标准》(GB3095-2012 及 2018 年修改单)中二级标准,TVOC 执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 中参考限值。有关污染物及其浓度限值见表 4-1。

表 4-1 项目所在区域环境空气质量标准

单位: μg/m³

二次 外加 <i>村</i> 加 <i>村</i> 45	标准限值	直(二级标准	主)	₩ WA+			
污染物名称	1 小时平均	日平均	年平均	· 标准			
SO_2	500	150	60				
NO ₂	200	80	40				
PM ₁₀	/	150	70				
PM _{2.5}	/	75	35	《环境空气质量标准》 (GB3095-2012及 2018年修			
СО	10	4	/	改单)			
O_3	200	160	/				
NO _X	250	100	50				
TSP	/	300	200				
TVOC	1	8h: 600		《环境影响评价技术导则 大气环境》(HJ2.2-2018)附 录 D			

2、地表水环境质量标准

麻园河执行《地表水环境质量标准》(GB3838-2002)中的V类标准,悬浮物选用原国家环保局《环境质量报告书编写技术规定》的推荐值。

表 4-2 地表水水质标准(摘录)

单位: mg/L, pH 除外

项目	水温	DO	pН	SS	COD _{Cr}	COD _{Mn}
标准值 (V类)		≥2	6~9	≤150	≤40	≤15
项目	BOD ₅	挥发酚	LAS	氨氮	总磷	石油类
标准值 (V类)	≤10	≤0.1	≤0.3	≤2.0	≤0.4	≤1.0

3、声环境质量标准

本项目所在区域属于 3 类声环境功能区, 执行《声环境质量标准》(GB3096-2008) 3 类标准, 即昼间≤65dB(A)、夜间≤55dB(A)。

1、水污染物排放标准

项目位于江海区污水处理厂纳污范围内,生活污水执行广东省《水污染排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂接管标准的较严者: COD_{Cr}220mg/L、BOD₅100mg/L、SS150mg/L、氨氮 24mg/L。

表 4-3 生活污水排放标准

污染物	《水污染排放限值》 (DB44/26-2001)第二时段三级标 准	江海污水处理厂 接管标准	本项目执行标准
COD_{Cr}	500mg/L	220mg/L	220mg/L
BOD ₅	300mg/L	100mg/L	100mg/L
SS	400mg/L	150mg/L	150mg/L
氨氮		24mg/L	24mg/L

2、废气排放标准

颗粒物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段 二级标准无组织排放监控浓度限值;

VOCs参照执行广东省《家具制造行业挥发性有机化合物排放标准》 (DB44/814-2010) II时段排气筒VOCs排放限值及无组织排放监控点浓度限值;

厂内 VOCs 无组织排放控制要求执行《挥发性有机物无组织排放控制标准》(GB 37822-2019):企业厂区内 VOCs 无组织排放监控点浓度应符合监控点处任意一次浓度限值: 30mg/m³。

表 4-4 大气污染物排放标准一览表

标准	污染物	排放限值	
广东省《大气污染物		排气筒高度	15m
排放限值》	颗粒物	最高允许排放浓度	120mg/m³
(DB44/27—2001)		最高排放速率	1.45kg/h
第二时段二级标准		无组织排放监控浓度限值	1.0mg/m³
广东省《家具制造行		排气筒高度	15m
业挥发性有机化合物 排放标准》	总 VOCs	最高允许排放浓度	30mg/m³
(DB44/814-2010) II		最高排放速率	1.45kg/h

时段排气筒 VOCs排 放限值及无组织排放		无组织排放监控浓度限值	2.0mg/m ³
监控点浓度限值			
《挥发性有机物无组		企业厂区内VOCs无组织排放	
织排放控制标准》	VOCs		30mg/m ³
(GB 37822-2019)		监控点浓度	

项目排气筒高度未能高出周围 200 m 半径范围的建筑 5 m 以上,排放速率需按 50% 执行。

3、噪声排放标准

营运期厂界噪声执行《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准(即昼间≤65dB(A), 夜间≤55dB(A))。

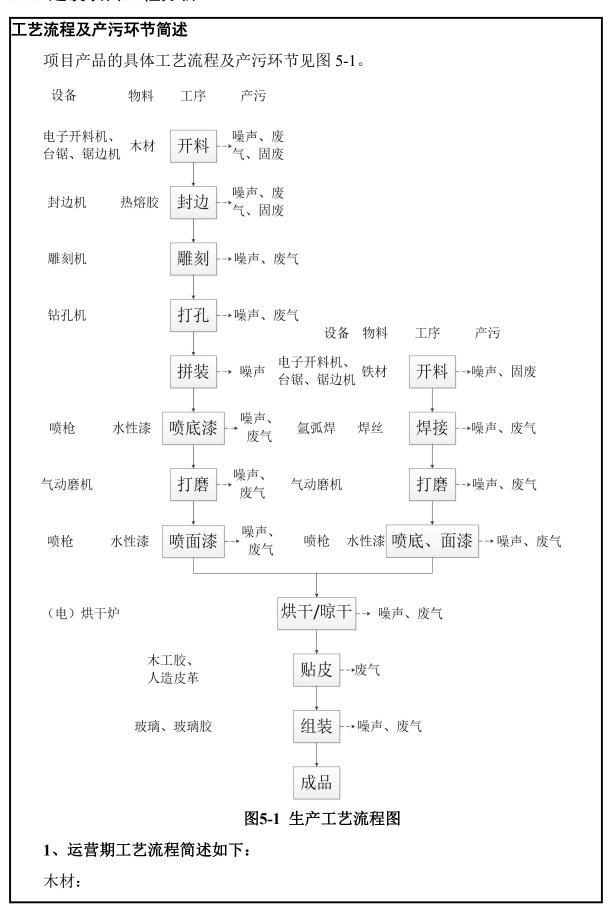
4、固体废物排放标准

固体废物管理应遵照《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》、《国家危险废物名录》、《危险废物贮存污染控制标准》(GB18597-2001)及2013年修改单、《一般工业固体废物贮存、处置污染控制标准》(GB18599-2001)及2013年修改单的相关规定进行处理。

根据本项目污染物排放总量及地方环保局意见,建议其总量控制指标按以下执行:

总量 控制

指标


1、水污染物排放总量控制指标

本项目生活污水进入江海污水处理厂,控制总量由污水厂内部调配,本报告建议不设置总量控制指标。

2、大气污染物排放总量控制建议指标

本项目主要污染物建议执行总量控制指标: VOCs0.190t/a(有组织排放 0.052t/a, 无组织排放 0.138t/a)

五、建设项目工程分析

开料:对外购原料采取电子开料机、台锯和锯切机进行开料;

封边:项目使用热熔胶通过封边机对木材进行封边处理;

雕刻: 为使工件美观,使用雕刻机对工件进行雕刻;

打孔: 用钻孔机对工件进行打孔;

拼装:将不同工件拼装起来;

喷底漆:在喷漆房内按产品喷涂要求对木材和铁材工件进行喷漆,先利用水性漆对工件进行底漆喷涂;底漆喷好后需静止约10分钟,称为流平。主要目的是将湿漆工件表面的溶剂挥发气体在一定时间内挥发掉,挥发气体挥发的同时湿漆膜也得以流平,从而保证了漆膜的平整度和光泽度。

打磨: 为使工件美观,使用打磨机对工件进行打磨;

喷面漆: 然后再利用水性漆对工件进行面漆喷涂; 喷漆完成后,工件需静止约30分钟。

铁材:

开料:对外购原料采取电子开料机、台锯和锯切机进行开料;

焊接:项目使用氩弧焊将工件焊接在一起;

打磨: 使用打磨机对工件进行打磨, 使后续喷漆工艺形成漆面不易掉漆;

喷底漆、面漆:在喷漆房内按产品喷涂要求对木材和铁材工件进行喷漆,先利用水性漆对工件进行底漆喷涂;底漆喷好后需静止约 10 分钟,称为流平。主要目的是将湿漆工件表面的溶剂挥发气体在一定时间内挥发掉,挥发气体挥发的同时湿漆膜也得以流平,从而保证了漆膜的平整度和光泽度,然后再利用水性漆对工件进行面漆喷涂;喷漆完成后,工件需静止约 30 分钟;

烘干/晾干:在晾干房自然晾干/烘干(若是急用,则用烘干炉烘干,烘干炉设置 在自然晾干房内,使用能源为电;

贴皮:将人造皮革用木工胶贴在工件上;

组装:将不同工件组装起来,如需装玻璃,则需要使用玻璃胶黏合;

成品: 组装完成即可得到成品。

2、产污环节分析

①废水:产生的废水为喷淋水、水帘柜废水和员工生活污水。

②废气: 开料、雕刻、打孔产生的木质粉尘, 打磨产生的粉尘, 焊接烟尘, 喷涂

产生的漆雾和有机废气,封边、贴皮、组装工序产生的有机废气。

③噪声: 各类机械设备运行时产生的噪声。

④固废:项目固废主要为员工生活垃圾、边角料、粉尘渣、漆渣、废活性炭、废 UV 光管和废包装材料。

主要污染工序

一、施工期污染分析

项目利用已建成厂房进行建设,施工期仅为设备安装。本次评价不再分析施工期 污染问题。

二、营运期污染工序

1、水污染源

项目产生的废水为员工生活污水、水帘柜废水和喷淋水。

(1) 生活污水

员工 20 人,项目不设食宿,年工作 300 天。参照《广东省用水定额》(DB44/T 1461-2014)和当地用水情况: 40 升/人·日,则生活用水总量为 240t/a。排污系数按 90% 计算,则生活污水为 216t/a,其污染物主要为 COD_{Cr}、BOD₅、SS、NH₃-N 等。

生活污水经化粪池预处理后达到广东省《水污染排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂接管标准的较严者,进入江海污水处理厂。

参考《广东省第三产业排污系数(第一批)》(粤环[2003]181 号)并类比当地居民生活污水污染物浓度产排情况,本项目生活污水产排情况见下表。

类别		污水量 (t/a)	COD _{Cr}	BOD ₅	SS	NH ₃ -N
	产生浓度(mg/L)		250	150	150	20
生活	产生量(t/a)	216	0.054	0.032	0.032	0.004
污水	排放浓度(216	220	100	120	20
	排放量(t/a)		0.048	0.022	0.026	0.004

表 5-1 生活污水产排情况一览表

(2) 水帘柜及喷淋废水

项目喷漆废气处理设施设置了两个水帘柜,根据建设单位提供资料,水帘柜共容水量约4m³,水帘柜废水循环使用,损失量按水量1%计,则水帘柜补充用水为12t/a。项目打磨粉尘和喷涂废气均设置了水喷淋,喷淋水循环使用,不外排。根据建设

单位提供资料,喷淋水箱容水量约1m³,废水循环使用,损失量按水量1%计,则喷淋水量损耗约为6t/a,合计两套喷淋设备需定期补充新鲜水12t/a。

水帘柜废水和喷淋废水,主要污染物为COD,考虑到不断回用,污染物浓度会过高,因此拟每半年清理一次,合计每年清理两次,废水约12m³。

根据《关于印发<江门市区零散工业废水第三方治理管理实施细则(试行)>的通知》(江环函[2019]442号)细则明确,工业企业生产过程中产生的生产废水,排放废水量小于或等于50吨/月的可纳入零散工业废水第三方治理的管理范畴。项目喷淋废水产生量12吨/年,小于50吨/月,属于零散废水管理范畴,经收集后定期交由零散工业废水处理单位统一处理。

2、废气污染源

废气污染源主要为开料、雕刻、打孔产生的木质粉尘,打磨产生的粉尘,焊接烟尘,喷涂产生的漆雾和有机废气,封边、贴皮和组装工序产生的有机废气。

(1) 木质粉尘

本项目开料、雕刻、打孔工序在生产过程中产生木质粉尘,污染因子为颗粒物(TSP)。根据建设单位提供的资料,本项目原材料木材,年消耗量为 360m³。参考《第一次全国污染普查工业污染源产排污系数手册(上册)》"2011 锯材加工业",因原料、产品尺寸要求多样,原料木材按厚度≤35 毫米计算,工艺加工原木(厚度≤35毫米)粉尘产污系数为 0.321 千克/立方米-产品。项目以原材料用量计,本项目使用木材 360m³,因此产生粉尘量约为 0.116t/a。

其中开料和雕刻工序的设备均有配备的袋式除尘器,钻孔机则没有,因此建设单位拟采取通过移动式布袋除尘器来收集处理钻孔机产生的粉尘后无组织排放。考虑到钻孔设备分布在一、二层,因此设两套移动式布袋除尘器。根据《袋式除尘器技术要求》(GB/T6719-2009),袋式除尘器除尘效率≥99%,考虑实际操作中的不确定因素,项目移动式布袋除尘器收集效率按80%进行计算,移动式收集处理后的粉尘,和未收集的粉尘,均以无组织的形式排放。

表 5-2 木质粉尘产排污情况

		:	经移动式布	粉尘			
 污染物	产生量			总无组织			
行来物	(t/a)	收集	收集量	处理	处理排放量	未收集部	排放量(t/a)
		率	(t/a)				

一层木质粉尘	0.058	80%	0.046	99%	0.00046	0.012	0.012
二层木质粉尘	0.058	80%	0.046	99%	0.00046	0.012	0.012

注: 全年按工作 300 天,工作时间按每天8个小时计。一层产污设备7台,二层6台,加工量基本一致。

外排粉尘废气达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段 无组织排放监控浓度限值。

(2) 打磨粉尘

本项目设置打磨工序,木材喷完面漆之后不平整需要打磨,铁材喷漆之前需要打磨,打磨该过程会产生小粒径粉尘,本次金属打磨粉尘产生量参考《机加工行业环境影响评价中常见污染物源强估算及污染治理》(徐海萍,湖北大学学报第 32 卷第 3期),机加工行业金属粉尘产生量一般取原材料总量的千分之一,即粉尘产生量约为加工工件量的 0.1%。项目使用铁材 2 吨,则粉尘产生量为 0.002t/a。木材打磨粉尘以水性漆量来计算,按照打磨掉的涂层厚度为 1um,总涂层面积的三分之一(考虑到只打磨不平整的地方)来计算:

 $m = \rho \delta S * 10^{-6} / (NV \epsilon)$

其中: m-涂料总用量(t/a)。

ρ-涂料密度 (g/cm³), 项目涂料密度 1.4 g/cm³。

S-涂装面积 (m²/a)。

δ-涂层厚度(μm)。

NV-涂料中的体积固体份(%),根据建设单位提供资料,水性漆固含量约为78%。

ε-上漆率,参考《广东省表面涂装(汽车制造业)挥发性有机废气治理技术指南》 粤环(2015)4号),喷涂涂料利用率约为60-70%,本项目取值60%计算。

则计算得木材打磨粉尘约 0.010t/a。合计打磨粉尘 0.012t/a。

建设单位拟在打磨工序设置集气罩收集粉尘,根据建设单位提供资料,设置三个集气罩(一共6台设备,编号为1-6,其中1、2号和3、4号分别共用一个集气罩,5号单独使用一个集气罩,6号设备为备用设备),合计所需抽风量2500m³/h,粉尘经收集后(收集效率约75%),收集后的粉尘经过风道引至水喷淋除尘设施内处理,处理效率80%以上,处理后废气通过15米高排气筒(G2)高空排放。

表 5-3 项目打磨粉尘产排情况表

污染	产生		有组织						
物	/ 土 量	产生速率	产生量	产生浓度	排放速率	排放量	排放浓度	产生量	
123		(kg/h)	(t/a)	(mg/m ³)	(kg/h)	(t/a)	(mg/m^3)	(t/a)	
打磨 粉尘	0.012	0.015	0.009	6.0	0.003	0.002	1.2	0.003	

注: 全年按工作 300 天, 工作时间按每天 2 个小时计。

(3) 焊接烟尘

本项目的焊接工序为氩弧焊,产生焊接烟尘,烟尘主要污染因子为颗粒物。参考氩弧焊的发尘量 2-5g/kg, 取较严值 5g/kg 焊材,根据建设单位提供资料,焊丝使用量为 0.01 吨/年,产生的烟尘量为 0.05kg/a。焊接年工作时间约为 200 天,每日平均焊接时间为 0.5 小时,则烟尘产生速率为 0.0005kg/h。

由于废气量不大,故颗粒物经车间厂房阻拦后,可符合广东省《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值: <1.0mg/m³标准限值。

(4) 喷涂废气

项目喷漆使用水性漆,在喷漆、自然晾干/烘干过程中会产生有机废气。项目喷漆 有机废气污染源计算参数见表 5-4。

表 5-4 项目有机废气污染源计算参数表

	油漆原材料	产生污染物(t/a)		
油漆	油漆产污系数	VOCs	漆雾	
水性漆 ①	VOCs 按 40g/L 计算 漆雾按 31.2%计算	4.0	0.131	1.248

注: ①水性漆挥发份根据建设单位提供涂料检验报告,挥发性有机化合物含量为 40g/L,经查阅资料得,项目使用水性漆密度为 1.22g/cm³;水性漆固含量约为 78%,上漆率约为 60%,则漆雾产生为 78%*(1-60%)=31.2%。

喷漆、烘干/晾干工序分别设置在独立的密闭房间内(喷漆房和晾干房,烘干工序的烘干炉设置在晾干房内),喷漆房、自然晾干房和烘干炉设置密封和负压抽风,参考《广东省生态环境厅关于印发重点行业挥发性有机物排放量计算方法的通知》(粤环函〔2019〕243号),采用全密闭式负压排放的方式,即 VOCs 产生源设置在封闭空间内,所有开口处,包括人和物料进出口处呈负压时,有机废气的收集效率可达95%。考虑到喷漆房、晾干房因员工进出以及烘干炉设备开关门拿取工件过程中会有少量废气逸散,因此收集效率按保守估算,取 90%。经水帘柜处理后的喷漆废气与封

边工序以及组装产生的有机废气一同处理,废气经水喷淋+UV 光解+活性炭装置处理后和经过 UV 光解+活性炭装置吸附的贴皮产生的有机废气后通过 15m 排气筒(G1)排放。废气产排情况见下表 5-5。

(5) 封边工序产生的有机废气

封边工序使用热熔胶产生有机废气。有机废气产污系数参照《胶粘剂挥发性有机化合物限量》(GB33372-2020)的本体型热塑类胶粘剂限值(限量值≤50g/kg),本环评按照最不利因素取 50g/kg 进行估算,项目热熔胶用量为 1 吨/年,则 VOCs 产生量为 0.05t/a。

(6) 组装时使用玻璃胶产生的有机废气

组装工序使用玻璃胶产生有机废气,此步骤位于一层,设有两个工位。有机废气产污系数参照《胶粘剂挥发性有机化合物限量》(GB33372-2020)的本体型有机硅类胶粘剂限值(限量值≤100g/kg),本环评按照最不利因素取 100g/kg 进行估算,项目玻璃胶用量为 4 吨/年,则 VOCs 产生量为 0.4t/a。

项目拟在封边工位和组装玻璃工位设置集气罩进行抽风,集气罩抽风量按照《简明通风设计手册》上吸式排风罩公式进行计算:

$L=K\times P\times H\times V$

式中: L--排风量, m³/s

P--排风罩敞开面周长, m; 根据建设单位提供资料, 封边工位上方排风罩周长约为 2.9m; 组装玻璃胶工位上方排风罩周长约为 2m

H--罩口至有害物质边缘, m; 取 0.6m

V--边缘控制点风速, m/s; 取 0.3m/s

K--不均匀的安全系数; 取 1.1

经公式计算得封边单个集气罩的抽风量为 0.574m³/s,项目共有 1 台封边机,预计设置 1 个集气罩进行抽风换气,抽风量为 0.574m³/s,即 2067m³/h;组装玻璃胶工位单个集气罩的抽风量为 0.396m³/s,设有两个工位,预计设置 2 个集气罩进行抽风换气,抽风量为 0.792m³/s,即 2852m³/h;喷漆房和自然晾干房设置密封和负压抽风,根据建设单位提供资料,喷涂房和晾干房面积约为 120 平方米,高度取 4.5 米,根据《广

东省表面涂装(汽车制造业)挥发性有机废气治理技术指南》按理论换气次数 60 次/h,计算得喷涂房和晾干房所需风量 32400m³/h;烘干炉设置负压抽风,设备尺寸为4.15m*1.8m*2.2m,根据《汽车涂装烘干炉的发展趋势》(龚天喜,(神龙汽车有限公司)):工作温度 150-180℃的烘干炉排气量一般为炉内体积的 10-30 倍/h,由于项目固化及烘干工序均为低温加工(小于 150℃),故取排气量为炉内体积的 10 倍/h,计算得烘干炉所需风量 164m³/h,因此风机抽风量约为 40000m³/h 可保证喷漆废气和封边废气的有效收集,废气经水喷淋+UV 光解+活性炭装置处理后,通过 15m 排气筒(G1)排放。

考虑喷漆房和自然晾干房设置密封,废气收集率达为90%以上;集气罩收集率为75%,有机废气处理效率为90%(参考广东省的印刷行业挥发性有机废气治理技术指南,UV光解的去除效率在50-95%之间,吸附法的去除效率在50-80%之间。由于UV光解法存在反应速率慢、光子效率低、催化剂易失活的缺点,其处理效率一般按保守估算取50%。本项目拟采用蜂窝式纤维活性炭,去除效率按80%计算,则整套系统的去除率可达90%。),漆雾的处理效率为99%,工作时间为8小时/天。喷漆废气和封边、组装产生的有机废气产生情况见下表5-5。

表 5-5 项目喷漆废气和封边、组装产生的有机废气产生情况表

	污染物	产生量 (t/a)		有组织					
工序			产生速率	产生量	产生浓度	产生量(t/a)			
		(Ua)	(kg/h)	(t/a)	(mg/m^3)	广生里(t/a) 			
封边	VOCs	0.050		0.038		0.012			
组装	VOCs	0.400	0.193	0.300	4.8	0.100			
喷涂	VOCs	0.131		0.124		0.007			
ツ (赤	漆雾	1.248	0.494	1.186	12.4	0*			

注:考虑到未收集的漆雾将在喷涂房内沉降,不会形成无组织漆雾废气逸散到喷漆房,故不考虑漆雾的无组织排放。

(7) 贴皮产生的有机废气

贴皮工序使用木工胶会产生有机废气。参照企业提供的检验报告,总挥发有机物为 21g/L,密度 1.1g/cm³,项目木工胶用量为 4t/a,则 VOCs 的产生量为 0.076t/a。

表 5-6 贴皮有机废气污染源产生量计算

 胶水用量(t/a)	产污系数(g/L)	密度(g/cm³)	VOCs			
以小川里(l/a))打示致(g/L) 	· 岳及(g/cm·)	(t/a)	(kg/h)		
4	21	1.1	0.076	0.0317		

注:项目每天的生产时间为8h,年工作300天。

项目拟在贴皮工位设置集气罩进行抽风,集气罩抽风量按照《简明通风设计手册》 上吸式排风罩公式进行计算:

$L=K\times P\times H\times V$

式中: L--排风量, m³/s

Q--排风罩敞开面周长, m; 根据建设单位提供资料, 贴皮工位上方排风罩周长约为 2.8m

H--罩口至有害物质边缘, m; 取 0.6m

V--边缘控制点风速, m/s; 取 0.3m/s

K--不均匀的安全系数;取1.1

经公式计算得单个集气罩的抽风量为 0.554m³/s,项目共设有 2 个贴皮工位,预计设置 1 个集气罩进行抽风换气,抽风量为 1.109m³/s,即 3992m³/h,因此风机抽风量约为 4000m³/h 可保证废气的有效收集,废气经 UV 光解+活性炭装置处理后,与喷涂和封边和组装产生的废气一同通过 15m 排气筒(G1)排放。

集气罩收集率为 75%,有机废气处理效率为 90%,工作时间为 8 小时/天。G1 排气筒废气污染物产排情况见下表 5-7。

表 5-7 项目 G1 排气筒废气产生及排放情况汇总表

					有纟	且织				无组织
上序	污染 物	产生 量 t/a	产生 速率 kg/h	风量 (m³/h)	产生 浓度 mg/m³	排放 量 t/a	排放 速率 kg/h	风量 (m³/h)	排放 浓度 mg/m³	排放量 t/a
贴 皮	VOCs	0.057	0.024	4000	6.0	0.006				0.019
封边	VOCs						0.022		0.5	0.012
组装	VOCs	0.462	0.193	40000	4.8	0.046	0.022	44000	0.3	0.100
喷	VOCs			10000						0.007
涂	漆雾	1.186	0.494		12.4	0.011	0.005		0.1	0

废气经处理后,排放的漆雾符合广东省《大气污染物排放限值》(DB44/27—2001) 二时段二级标准中颗粒物标准; VOCs符合《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)第II时段排放限值。

3、噪声污染源

项目噪声主要来自生产设备在运行期间产生噪声,其噪声值约为 70~85dB(A),主要噪声源噪声级见表 5-8。声源强度为各设备的单台设备声功率级,是距离设备一米所测的噪声值。

表5-8 项目主要噪声源噪声级

名称	名称 数量(台)		名称	数量(台)	噪声级 (dB(A))
电子开料机	1	80	钻孔机	2	80
台锯	5	85	锯切机	5	85
封边机	1	70	雕刻机	1	80
氩弧焊	2	70	气动磨机	6	85
喷枪	6	70	烘干炉	1	80

4、固体废弃物

本项目固体废物主要为员工生活垃圾、一般固体废物、危险废物。

(1) 员工生活垃圾

项目员工 20 人,不在厂区内食宿,年工作 300 天,生活垃圾以 0.5kg/(d·人)计,则项目共计产生生活垃圾量为 3t/a,交环卫部门清运处理。

(2) 一般固体废物

边角料:

项目开料过程中会产生边角料,产生量约为原材料的1%,即产生量为0.82t/a,交 废品回收单位回收处理。

粉尘渣:

开料、雕刻、钻孔收集木质粉尘渣合计 0.820t/a, 收集后交废品回收单位回收处理。

(3) 危险废物

废 UV 光管:

项目 UV 光解设施中 UV 灯管为紫外含汞灯管,UV 灯管使用一段时间达不到设定要求时需更换,会产生一定量的废 UV 灯管。UV 灯管的连续使用时间不应超过4800h,结合 UV 灯管的工作环境及平均使用寿命,项目 UV 光解设备废 UV 灯管的产

生量约为 0.04t/a。废 UV 灯管的主要成分为玻璃、汞、荧光剂等,属于《国家危险废物名录》(2021 年)中的 HW29 900-023-29 生产、销售及使用过程中产生的废含汞荧光灯管及其他废含汞电光源废物,交给有资质单位回收处理。

废活性炭:

项目有机废气处理装置产生废活性炭,根据大气污染源分析,VOCs削减量分别为 0.416t/a 和 0.051t/a,其中活性炭吸附的 VOCs 分别为 0.185t/a 和 0.023t/a。参照张晓露论文《活性炭对轻烃类 VOCs 吸附行为研究》,常规活性炭吸附量为 0.25tVOCs/t活性炭,则所需活性炭为 0.74t/a 和 0.092t/a。项目活性炭填充量为 0.8ta/和 0.1t/a,每年更换一次,则废活性炭产生量 1.108t/a(活性炭用量加上吸附有机废气量)。根据《国家危险废物名录》(2021 年),废活性炭属于编号为 HW49 的危险废物,废物代码为 900-039-49 烟气、VOCs 治理过程(不包括餐饮行业油烟治理过程)产生的废活性炭,化学原料和化学制品脱色(不包括有机合成食品添加剂脱色)、除杂、净化过程产生的废活性炭(不包括 900-405-06、772-005-18、261-053-29、265-002-29、384-003-29、387-001-29 类废物),交给有资质单位回收处理。

漆渣:

项目喷涂废气的废气处理装置含漆渣,喷漆房内自然沉降的漆雾以及打磨粉尘处理装置的粉尘(含漆),合计产生量约1.244t/a,参考HW12染料、涂料废物,代码:HW12900-252-12使用油漆(不包括水性漆)、有机溶剂进行喷漆、上漆过程中产生的废物,应交由具有危险废物处理资质的单位统一处理。

(4) 其他固废

项目生产过程会产生废包装材料,根据建设单位提供的资料,废包装材料的产生量为0.12t/a。根据《固体废物鉴别标准 通则》(GB34330-2017): "任何不需要修复和加工即可用于原始用途的物质,可不作为固体废物管理"。故废包装材料直接交由供应商回收,不当作固废管理。若供应商不愿意回收,则作为危险废物处理,属于《国家危险废物名录》(2021年)中的HW49 900-041-49含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质,交给有资质单位回收处理。

表 5-9 项目危险废物汇总表

序号	危险废 物名称	危险废 物类别	危险废物 代码	产生量 (吨/ 年)	产生工 序及装置	形态	主要成分	有害成分	产废周期	危险特性	贮存或 处置	
----	------------	------------	------------	------------------	----------	----	------	------	------	------	-----------	--

1	废活性 炭	HW49	900-039-49	1.108	废气处 理	固态	碳、有 机物	碳、有 机物	1 次/年	毒性	项目暂 存在危
2	废 UV 光 管	HW29	900-023-29	0.04	废气处 理	固态	含汞废物	汞	1 次/年	毒性	废暂存 区、交给
3	漆渣	HW12	900-252-12	1.244	喷涂	固态	涂料	涂料	1 次/年	毒性	有资质
4	废包装* 材料	HW49	900-041-29	0.12	生产	固态	涂料	涂料	1 次/年	毒性	单位回 收

注: 若供应商不愿意回收废包装材料,则作为危险废物处理。

5、污染物汇总

表 5-10 项目污染源汇总

污染物种类	污染物	名称	产生量(t/a)	排放量(t/a)
	COL	O _{Cr}	0.054	0.048
生活污水	BOI	O ₅	0.032	0.022
$(216m^3/a)$	SS	}	0.032	0.026
	氨氮	₹	0.004	0.004
生产废水	水帘柜和雪	贲淋废水	12	12
	木质粉尘	无组织	0.116	0.024
	+工 床 业/ //	有组织	0.009	0.002
	打磨粉尘	无组织	0.003	0.003
	焊接烟尘	无组织	0.00005	0.00005
	喷涂废气	VOCs	0.124	0.012
	(有组织)	漆雾	1.186	0.011
废气	喷涂废气	VOCs	0.007	0.007
灰 气	(无组织)	漆雾	0.062	0
	封边产生的 VOCs	有组织	0.038	0.004
		无组织	0.012	0.012
	贴皮产生的	有组织	0.057	0.006
	VOCs	无组织	0.019	0.019
	组装产生的	有组织	0.300	0.030
	VOCs	无组织	0.100	0.100
	边角	料	0.82	0
	粉尘	渣	0.820	0
	废 UV	光管	0.04	0
固体废弃物	废活性	生炭	1.108	0
	漆泡		1.244	0
固体废弃物	废包装	材料	0.12	0
	员工生活	舌垃圾	3	0

六、项目主要污染物产生及预计排放情况

内容	排放源	污染	物名称	处理前产 及产		排放浓度	及排放量	
		CO	OD _{Cr}	250 mg/L	0.054t/a	220mg/L	0.048t/a	
水	生活污水	В	OD_5	150 mg/L	0.032t/a	100mg/L	0.022t/a	
污	216t/a	(SS	150 mg/L	0.032t/a	120mg/L	0.026t/a	
染		复	氮	20mg/L	0.004t/a	20mg/L	0.004t/a	
物	生产废水	水帘柜	和喷淋废	12)+	交由零散工业废水处理单		
			水	12		位统-	- 处理	
	开料、雕 刻、钻孔	粉尘	无组织	0.11	6t/a	0.024t/a		
	焊接	烟尘	无组织	0.000	05t/a	0.000	05t/a	
	打磨粉尘	粉尘	有组织	6.0mg/m^3	0.009t/a	1.2 mg/m 3	0.002t/a	
	11	彻土	无组织	0.00	3t/a	0.00	3t/a	
大	贴皮			6.0mg/m^3 0.057t/a			0.006t/a	
气	组装	VOCs		0.300t/a		0.42 m ~/m 3	0.030t/a	
污	封边	VOCS	有组织	4.8mg/m^3 0.038t/a		0.43mg/m^3	0.004t/a	
染	喷涂	漆爱			0.124t/a		0.011t/a	
物		漆雾		12.4mg/m ³	1.186t/a	0.1mg/m^3	0.011t/a	
	贴皮			0.01	9t/a	0.01	9t/a	
	组装	VOCs		0.10	0t/a	0.100t/a		
	封边	VOCS	无组织	0.01	2t/a	0.01	2t/a	
	喷涂			0.00	7t/a	0.007t/a		
		漆雾		/	1	/		
	当	上活垃圾	į	3t	/a	交环卫部门]清运处置	
	工业固废	边	角料	0.82	2t/a	交废品回收单	6 6 同版 4 3 理	
固		粉	尘渣	0.82	0t/a	文)及丽凹似年	一位四枚处理	
体		废 U	V 光管	0.04	4t/a			
废	危险废物	废活	5性炭	1.10	8t/a	交给有资质单	位回收处理	
物		沒	₹渣	1.24	4t/a			
	其他固废	座句	装材料	0.12		交供应商回收	7,若供应商	
	八世型次	,,,,				不愿回收,贝		
H 17	 运营期	,		, , , , , , , , , , , , , , , , , , , ,	_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	生噪声, 其噪	, , , , , , , , , , , , , , , , , , , ,	
声	噪声							
++ /.1.			IF》(QRI	<u> </u>	叫 3 尖에作,	对环境影响不)人。	
其他								

主要生态影响(不够时可附另页)

据现场踏勘,该项目所在地周边无大面积自然植被群落及珍稀动植物资源等。本项目所排放的"三废"排放量少,且能够及时处理,达标排放,对周围生态环境影响不大。

七、环境影响分析

施工期环境影响简要分析

项目利用已建成厂房进行建设,施工期仅为设备安装。本次评价不再分析施工期污染问题。

营运期环境影响分析

1、运营期废水影响分析

(1) 污染物影响分析

本项目水帘柜废水和喷淋水循环使用,喷涂的水帘柜废水和喷淋废水一年定期排放两次,合计排放量为12t/a,需定期外运交由零散废水处理单位处理。因此本项目外排废水主要为生活污水,排放量为216t/a,生活污水主要污染物为COD_{Cr}、BOD₅、SS和氨氮。生活污水经化粪池预处理后达到达到广东省《水污染排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂接管标准的较严者,进入江海污水处理厂。

(2) 水污染物影响评价

排放方式

根据《环境影响评价技术导则地表水环境(HJ 2.3—2018)》按照建设项目的影响类型、排放方式、排放量或影响情况、受纳水体环境质量现状、水环境保护目标等综合确定,水污染影响型建设项目评价等级判定依据见表7-1。项目产生的废水为生活污水,进入江海污水处理厂,生产废水外运交由零散废水处理单位处理,等级判定为三级B。

表 7-1 水污染影响型建设项目评价等级判定依据

\17 \A \A4		判定	依据
评价等 	į	非放	废水排放量(Q/m³/d)
	-	方式	水污染物当量数 W/(无量纲)
一级	直拉	妾排放	Q≥20000 或 W≥600000
二级	直拉	妾排放	其他
三级 A	直拉	妾排放	Q<200 且 W<6000
三级 B	间扎	妾排放	
	表7-2 本项	[目的等级判定约	吉果
影响类型			水污染影响型

间接排放

水环境保护目	是否涉及保护目标	否				
标	保护目标	/				
	等级判定结果	三级B				

废水排放情况汇总:

表7-3 废水类别、污染物及污染治理设施信息表

				汽	染治理设施			排放	
废水 类别	污染物 种类	排放 去向	排放 規律	污染治 理设施 编号	污染治 理设施 名称	污染治 理设施 工艺	排放口编号	口置否合求	排放 口类 型
生活 污水	COD _{Cr} 、 BOD ₅ 、 SS、氨氮	江海 污水 处理 厂	间断	/	/	化粪池	WS-01	是	企业 总排

表 7-4 废水间接排放口基本情况表

		排放口地理坐标		废水排				受纳污水处理厂信息			
排放 口编 号	排放口名称	经度	纬度	放量/(万 m³/a)	排放 去向		I ALL IV	名称	污染物种 类	国家或地方污染物排放标准 浓度限值 (mg/L)	
	生活				江海			江海	COD_{Cr}	40	
WC 01	污水	E113.166416°	N22.568648°	0.0216	污水	 间断		污水	BOD ₅	10	
WS-01	排放	E113.100410	N22.300040	0.0216	处理	理		处理	SS	10	
					J)_	氨氮	5	

表 7-5 废水污染物排放执行标准表

排放口编号	排放口名称	污染物种类	国家或地方污染物排放标准及其他按 规定商定的排放协议		
			名称	浓度限值(mg/L)	
	生活污水排放口	$\mathrm{COD}_{\mathrm{Cr}}$	广东省《水污染物 排放限值》	220	
WS-01		BOD ₅	(DB44/26-2001)第 二时段三级标准和 江海污水处理厂设 计进水水质标准较 严值	100	
		SS		150	
		氨氮		24	

	表7-6 废水污染物排放信息表							
序号	排放口编号	污染物种类	污染物种类 排放浓度 (mg/L) 日排放量 (t/d) 年					
		$\mathrm{COD}_{\mathrm{Cr}}$	220	0.00016	0.048			
1	WS-01	BOD ₅	100	0.00007	0.022			
1	W 2-01	SS	120	0.00009	0.026			
		氨氮	20	0.00001	0.004			
			0.048					
全厂排放口合计			0.022					
			0.026					
			氨氮		0.004			

①生活污水纳污可行性分析

江海区污水处理厂总占地面积 199.1 亩,远期总规模为处理城市生活污水 25 万 m³/d,将分期进行建设。目前已建成江海污水处理厂首期工程占地面积 67.5 亩,江海污水处理厂首期设计规模 8×10⁴m³/d,第一阶段实施规模为 5×10⁴m³/d,建于 2009年,其环评批复:江环技[2008]44号,于 2010年完成首期一期工程(25000m³/d)验收:江环审[2010]93号,经江门市环境保护局核发《江门市排放污染物许可证》编号:江环证第 300932号,于 2011年完成首期二期工程(25000m³/d)验收:江环监[2011]95号;第二阶段:2012年污水厂进行了技术改扩建增加 3×10⁴m³/d MBR 处理系统,扩建后设计总规模达到 8×10⁴m³/d,其环评批复:江环审[2012]532号,于 2013年完成验收:江环验[2013]37号。

江海污水处理厂首期设计规模 8×10⁴m³/d, 其中第一阶段 5×10⁴m³/d, 采用预处理+氧化沟+二沉池+紫外消毒工艺,于 2010 年 9 月投入正式运行;第二阶段 3×10⁴m³/d,采用预处理+MBR+紫外消毒工艺,于 2013 年 9 月正式投入运行。于 2017 年 12 月进行首期升级提标改造,采用"磁混凝澄清+过滤+消毒"工艺。服务范围为东海路以东、五邑路以南、高速公路以北、龙溪路以西,以及信宜玻璃厂地块,合共 11.47 平方公里。

江海区污水处理厂正常运行,该厂处理后的尾水排出麻园河,尾水排放标准执行国家《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准和广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准中较严值。江海区污水处理厂处理能力为 80000m³/d,本项目排入污水厂的废水为 0.72m³/d,仅为江海区污水处理厂处理能力的 0.0009%。因此,江海区污水处理厂具有富余的能力处理本

项目废水。

②水帘柜废水和喷淋废水纳污可行性分析

根据《关于印发<江门市区零散工业废水第三方治理管理实施细则(试行)>的通知》(江环函[2019]442号)细则明确,工业企业生产过程中产生的生产废水,排放废水量小于或等于50吨/月的可纳入零散工业废水第三方治理的管理范畴。

项目喷淋废水定期排放,排放量为12吨/年<50吨/年,符合零散工业废水第三方治理的管理范畴。因此,项目喷淋废水交由零散废水处理单位处理是可行的。

项目零散工业废水意向排污单位为江门市崖门新财富环保工业有限公司,根据《关于江门市崖门新财富环保工业有限公司废水处理厂二期处理 300 吨/天零散工业废水项目环境影响报告表的批复》(江新环审[2019]110 号),江门市崖门新财富环保工业有限公司接收符合《江门市区零散工业废水第三方治理管理实施细则(试行)》规定的零散工业废水,种类包括印刷废水、喷漆有机废气喷淋废水、表面处理的除油酸洗清洗废水、印花废水、化工废水、食品废水等,不接收含化学转化膜的金属表面处理废水和涉及危险废物的废水。

项目生产废水符合零散工业废水第三方治理的管理范畴,废水种类属于喷漆有机 废气喷淋废水,属于一般工业废水,不涉及危险废物,符合江门市崖门新财富环保工业有限公司接收工业废水的要求。

2、运营期废气影响分析

(1) 污染物分析

废气污染源主要为开料、雕刻、打孔产生的木质粉尘,打磨产生的金属粉尘,焊接烟尘,喷涂产生的漆雾和有机废气,封边、贴皮工序产生的有机废气。

根据工程分析可知,项目木质粉尘经过布袋除尘器处理后车间内排放,无组织排放量为 0.024t/a;打磨产生的粉尘经过水喷淋处理后通过 15m 排气筒(G2)排放,有组织排放量为 0.002t/a,排放浓度为 1.2mg/m³;焊接烟尘车间内无组织排放,排放量为 0.05kg/a;经水帘柜处理后的喷涂废气和封边和组装工序产生的有机废气一同经过喷淋+UV 光解+活性炭吸附处理后,与经过 UV 光解+活性炭处理后的贴皮工序有机废气一同通过 15m 排气筒(G1)排放,合计有组织排放量为 VOCs 0.052t/a,颗粒物 0.011t/a,排 放 浓 度 为 VOCs 0.5mg/m³,颗 粒 物 0.1mg/m³,无 组 织 排 放 量 为

VOCs0.138t/a,喷漆房内漆雾自然沉降。颗粒物可符合广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准和无组织排放监控浓度限值; VOCs可符合广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段排气筒 VOCs排放限值及无组织排放监控点浓度限值; 厂内 VOCs 无组织排放可符合《挥发性有机物无组织排放控制标准》(GB 37822-2019): 企业厂区内 VOCs 无组织排放监控点浓度应符合监控点处任意一次浓度限值: 30mg/m³。

(2) 大气污染物影响分析

根据《环境影响评价技术导则—大气环境》(HJ2.2-2018)评价工作级别的划分方法,分别计算每一种污染物的最大地面浓度占标率 Pi 及 D_{10%}所对应的最远距离。评价等级划分方法见表 7-8。

 评价工作等级
 评价工作分级判据

 一级
 P_{max}≥10%

 二级
 1%≤P_{max}<10%</td>

 三级
 P_{max}<1%</td>

表 7-8 大气环境影响评价工作等级

 $D_{10\%}$ 采用估算模式 AERSCREEN 计算出; P_{max} 按公式 $P_{max} = C_{max}/C_0 \times 100\%$ (式中 C_{max} 采用估算模式计算出的污染物最大地面浓度, C_0 是污染物环境空气质量标准)计算。

本项目大气环境影响评价因子选择 TSP、PM₁₀、VOCs 进行预测,评价因子和评价标准见下表。

表 7-9 评价因子和评价标准表

评价因子	平均时段	标准值/ (μg/m³)	折算 1h 均值/(μg/m³)	标准来源
TSP	日小时均值	300	900	《环境空气质量标准》
PM ₁₀	日小时均值	150	450	(GB3095-2012 及 2018 年修改单)
VOCs	8 小时均值	600	1200	《环境影响评价技术 导则 大气环境》 (HJ2.2-2018) 附录 D

表 7-10 估算模式计算参数

	选项	取值
城市/农村选	城市/农村	城市

项	人口数 (城市选项时)	50万	
	最高环境温度/℃	38	
	最低环境温度/℃	2	
	土地利用类型	城市	
	区域湿度条件	湿润气候	
是否考虑地	考虑地形	是 √ 否	
形	地形数据分辨率/m		
	考虑海岸线熏烟	是 √否	
是否考虑海 岸线熏烟	岸线距离/km		
	岸线方向/°		

表 7-11 项目主要污染源参数表

ᄷ	刈旦
ᄶ	꺄

排气筒底 中心坐 名称 (m)		坐标	排气 筒底 部海	排气 筒高	排气筒出口内	烟气速 率/	烟气温 度(℃)	年排 放小 时数	污染源排放速 率(kg/h)
	X	Y	- 妆高 度(m) (m/s)		及(它)	(h)	4 (kg/II)		
G1排 气筒	-7	11	/	15	1	16	25	2400	VOCs 0.022 PM ₁₀ 0.005
G2排 气筒	30	-8	/	15	0.25	14	25	600	PM ₁₀ 0.003

面源(多边形)

名称	面源名 坐标		面源海拔高度 (m)	面源有效 排放高度 (m)	年排放小时 数(h)	污染源排放	速率 (kg/h)
	X	Y				TSP	VOCs
	-41	7					
一层	-40	-14	/	4.5	2400		
生产	37	-6		_		0.006	0.050
车间	34	13					
	-41	7					
	-41	7					
二层	-40	-14					
生产	37	-6	/	9	2400	0.005	0.008
车间	34	13					
	-41	7					

根据项目的初步工程分析结果,本项目排放的大气污染物最大落地浓度占标率详 见表 7-12。

表 7-12 主要污染源估算模型计算结果表

下风向距离	G1—PM ₁₀		
	预测质量浓度(μg/m³)	占标率(%)	

10m	0.0078	0.00			
25m	0.0996	0.02			
50m	0.2619	0.06			
57m	0.3016	0.07			
75m	0.2493	0.06			
100m	0.2981	0.07			
下风向最大质量浓度及占标率	0.3016	0.07			
	-	-			
评价等级	三	级			
	G1—V	VOCs			
下风向距离	预测质量浓度(μg/m³)	占标率(%)			
10m	0.0345	0.00			
25m	0.4382	0.04			
50m	1.1525	0.10			
57m	1.3270	0.11			
75m	1.0967	0.09			
	1.3117	0.11			
下风向最大质量浓度及占标率	1.3270	0.11			
评价等级	三级				
	G2—PM ₁₀				
下风向距离	预测质量浓度(μg/m³)	占标率(%)			
10m	0.0827	0.02			
18m	0.2672	0.06			
25m	0.2242	0.05			
50m	0.1571	0.03			
75m	0.1495	0.03			
	0.1789	0.04			
下风向最大质量浓度及占标率	0.2672	0.06			
	- -	-			
评价等级	Ξ:	 级			
	面源一层	₹—TSP			
下风向距离	预测质量浓度(μg/m³)	占标率(%)			
10m	9.4729	1.05			
25m	10.4570	1.16			
39m	11.1590	1.24			
50m	8.2023	0.91			
75m	3.8776	0.43			
	2.4523	0.27			
		<u> </u>			

下风向最大质量浓度及占标率	11.1590	1.24	
D _{10%} 最远距离(m)			
评价等级	二级		
下风向距离	面源一层—	-VOCs	
下 风问此 尚	预测质量浓度(μg/m³)	占标率(%)	
10m	78.9408	6.58	
25m	87.1417	7.26	
39m	92.9917	7.75	
50m	68.3525	5.70	
75m	32.3133	2.69	
100m	20.4358	1.70	
下风向最大质量浓度及占标率	92.9917	7.75	
D _{10%} 最远距离(m)			
评价等级	二级		
	面源二层—TSP		
下风向距离	预测质量浓度(μg/m³)	占标率(%)	
10m	3.6203	0.40	
25m	4.2214	0.47	
39m	4.6521	0.52	
50m	3.9650	0.44	
75m	2.3342	0.26	
100m	1.5521	0.17	
风向最大质量浓度及占标率	4.6521	0.52	
D _{10%} 最远距离(m)			
评价等级	二级		
수 m_ 광·	面源二层—	-VOCs	
下风向距离	预测质量浓度(μg/m³)	占标率(%)	
10m	5.7925	0.48	
25m	6.7542	0.56	
39m	7.4434	0.62	
50m	6.3440	0.53	
75m	3.7347	0.31	
100m	2.4834	0.21	
风向最大质量浓度及占标率	7.4434	0.62	
D _{10%} 最远距离 (m)			
评价等级	二级		

由表7-12可见,本项目排放的大气污染物对外环境影响最大的为二层生产车间的

VOCs的排放,占标率为7.75%。故本项目的环境空气影响评价工作等级应为二级评价,项目污染物占标率较低,对大气环境影响不大。根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),二级评价项目大气环境影响评价范围边长取5km,二级评价项目不进一步预测与评价,只对污染物排放量进行核算。

表7-13 大气污染物有组织排放量核算表

	排放口编号	污染物	核算污染物浓度	核算排放速率	核算年排放量	
	主要排放口					
/	/	/	/	/	/	
主要排	放口合计		/		/	
			一般排放口			
1	G1	VOCs	0.5mg/m^3	0.022kg/h	0.052t/a	
1	GI	颗粒物	0.1mg/m^3	0.005kg/h	0.011t/a	
2	G2	颗粒物	1.2mg/m ³	0.003kg/h	0.002t/a	
	故口会社	VOCs			0.052t/a	
Ŋ 又 1 ℲͰ	一般排放口合计		颗粒物			
有组织排放总计						
有组织排放总计		VOCs			0.052t/a	
行组织 	1117以心 11	颗粒物			0.013t/a	

表7-14 大气污染物无组织排放量核算表

排妝口	本 海		国家或地方污染物技	非放标准	 年排放量/
编号	环节	污染物	标准名称	浓度限值/ (mg/m³)	十分(t/a)
/			《大气污染物排放限 值》(DB44/27-2001)		0.024
/	打磨	一	中第二时段无组织排放	1.0	0.003
/	焊接		监控浓度限值		0.00005
/	喷涂		《家具制造行业挥发性		0.007
/	封边		有机化合物排放标准》		0.012
/	组装	VOCs	· ·	2.0	0.100
/	贴皮		技术组织排放监控点浓		0.019
			无组织排放总计		
子 组织排放 首社			颗粒物	0.02705	
15TT-5/17L/1X1	EV 1.1		VOCs	0.138	
	/ / / / /	編号 环节 / 开料、周刻、钻孔 / 打磨 / 焊接 / 喷涂 / 封边 / 组装	編号 环节 / 开料、雕刻、钻孔 / 打磨 / 焊接 / 劈涂 / 封边 / 组装 / 贴皮 VOCs	排放口 编号 产污 环节 污染物 标准名称 / 开料、雕 刻、钻孔 《大气污染物排放限 值》(DB44/27-2001)中第二时段无组织排放 监控浓度限值 / 喷涂 / 《家具制造行业挥发性 有机化合物排放标准》 (DB44/814-2010)II时 段无组织排放监控点浓 度限值 / 贴皮 **Aux ** *******************************	编号 环节 污染物 标准名称 浓度限值/ (mg/m³) / 开料、雕刻、钻孔 《大气污染物排放限值》(DB44/27-2001)中第二时段无组织排放监控浓度限值 1.0 / 焊接 《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010) II时段无组织排放监控点浓度限值 2.0 / 贴皮 下组织排放监控点浓度限值 / 贴皮 下组织排放监控点浓度限值 / 工组织排放监控点浓度限值 / 斯拉物

表7-15 大气污染物年排放量核算

序号	污染物	年排放量(t/a)
1	VOCs	0.190
2	颗粒物	0.04005

表 7-16 大气污染物非正常排放量核算表

 序 号	污染源	非正常 排放原 因	污染物	非正常排 放速率 (kg/h)	非正常排 放浓度 (mg/m³)	单次持 续时间 /h	年发生 频次/次	应对措 施
	封边、组装、喷涂	处理设 施失效	颗粒物	0.494	12.4	2	1	停工
G1		处理设 施失效	VOCs	0.193	4.8	2	1	停工
	贴皮	处理设 施失效	VOCs	0.024	6.0	2	1	停工
G2	打磨	处理设 施失效	颗粒物	0.015	6.0	2	1	停工

综合上述,根据工程分析可知,项目木质粉尘经过布袋除尘器处理后车间内排放,无组织排放量为 0.024t/a;打磨产生的粉尘经过水喷淋处理后通过 15m 排气筒(G2)排放,有组织排放量为 0.002t/a,排放浓度为 1.2mg/m³;焊接烟尘车间内无组织排放,排放量为 0.05kg/a;经水帘柜处理后的喷涂废气和封边和组装工序产生的有机废气一同经过喷淋+UV 光解+活性炭吸附处理后,与经过 UV 光解+活性炭处理后的贴皮工序有机废气一同通过 15m 排气筒(G1)排放,合计有组织排放量为 VOCs 0.052t/a,颗粒物 0.011t/a,排放浓度为 VOCs 0.5mg/m³,颗粒物 0.1mg/m³,无组织排放量为 VOCs0.138t/a,喷漆房内漆雾自然沉降。颗粒物可符合广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准和无组织排放监控浓度限值;VOCs 可符合广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段排气筒 VOCs 排放限值及无组织排放监控点浓度限值;厂内 VOCs 无组织排放可符合《挥发性有机物无组织排放控制标准》(GB 37822-2019):企业厂区内 VOCs 无组织排放监控点浓度应符合监控点处任意一次浓度限值:30mg/m³,对周边环境影响不大。

根据《环境影响评价技术导则—大气环境》(HJ2.2-2018),"对于项目厂界浓度满足大气污染物厂界浓度,但厂界外大气污染物短期贡献浓度超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护距离,以确保大气环境防护区域外的污染物贡献浓度满足环境质量标准"。根据估算模型预测,项目大气排放污染物短

期贡献浓度未超过环境质量浓度限值,因此本项目无需设置大气环境防护距离。

3、运营期噪声影响分析

项目噪声主要是生产设备运行产生的机械噪声,噪声源强在 70-85dB(A)。项目所在地为环境噪声 3 类声环境功能区。项目建成后不会引起区域噪声级明显变化,根据《环境影响评价技术导则 声环境》(HJ2.4-2009)的规定,噪声对环境的影响评价工作等级定为三级。

根据《环境影响评价技术导则 声环境》(HJ2.4-2009)推荐的方法,在用倍频带声压级计算噪声传播衰减有困难时,可用 A 声级计算噪声影响分析如下:

(1) 设备全部开动时的噪声源强计算公式如下:

$$L_T = 10 \lg(\sum_{i=1}^{n} 10^{0.1 Li})$$

式中:

 L_T 一噪声源叠加 A 声级, dB(A);

Li一每台设备最大 A 声级, dB(A):

n一设备总台数。

计算结果: L_T=97.5dB(A)。

(2) 点声源预测模式

$$L_A(r) = L_A(r_0) - (A_{div} + A_{atm} + A_{bar})$$

式中:

 $L_A(r)$ ——距声源 r 米处预测点的 A 声级,dB:

 $L_A(r_0)$ ——参考位置距声源 r_0 米处的 A 声级,dB;

(3) 几何发散引起的倍频带衰减 A_{div}

无指向性点源几何发散衰减公式: $A_{div} = 20 \times \lg(r/r_0)$;

(4) 大气吸收引起的倍频带衰减 Aam

空气吸收引起的衰减公式: $A_{atm}=\alpha$ (r-r₀) /1000, α 取 2.8(500Hz,常温 20°C,湿度 70%)。

(5) 声屏障引起的倍频带衰减 Abar

位于声源和预测点之间的实体障碍物,如围墙、建筑物、土坡或地堑等起声屏障作用,从而引起声能量的较大衰减。在环境影响评价中,可将各种形式的屏障简化为

具有一定高度的薄屏障。

声屏障引起的衰减按公式:

$$A_{bar} = -101g \left[\frac{1}{3 + 20N_1} + \frac{1}{3 + 20N_2} + \frac{1}{3 + 20N_3} \right]$$

本环评以厂房墙体、门窗隔音量为 30dB(A),项目生产设备距北厂界约 5.5m,西厂界约 4.5m,南厂界约 6m,东厂界约 4.5m,进行预测计算。

噪声预测值见下表 7-17。

表 7-17 噪声预测结果

单位: dB(A)

预测点	贡献值	枝	达标情况	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	以	昼间	夜间	经协用 机
北厂界	52.7	65	55	达标
南厂界	51.9	65	55	达标
西厂界	54.4	65	55	达标
东厂界	54.4	65	55	达标

预测结果如上图所示,项目厂界噪声项目噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)的3类标准。经过沿途厂房、绿化带,噪声削减更为明显,对敏感点的影响更小。

为了进一步降低生产过程中产生的噪声,本环评建议建设单位采取如下治理措施:

- ① 生产设备在选型上充分注意选择低噪声设备,采用隔声、吸声、减震等措施。
- ② 根据实际情况,对高噪声设备进行合理布局。
- ③ 加强设备日常维护与保养,定期对设备进行检修,防止不良工况下的故障噪声产生。

经过上述措施处理后,确保本项目各边界噪声能达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中表 1 工业企业厂界环境噪声排放限值 3 类区限值,则对项目内员工及周边环境影响不明显。

4、固体废弃物影响分析

本项目固体废物主要为员工生活垃圾、一般固体废物、危险废物。

(1) 生活垃圾

生活垃圾量为 3t/a, 交环卫部门清运处理。

(2) 一般固体废物

边角料:根据工程分析,项目机加工过程中产生边角料0.82t/a,交废品回收单位回收处理。

粉尘渣:根据工程分析,开料、雕刻、钻孔收集木质粉尘渣合计0.820t/a,交废品回收单位回收处理。

(3) 危险废物

根据工程分析,项目废气处理装置产生废 UV 光管 0.04t/a,废活性炭 1.108t/a,生产中产生漆渣 1.244t/a,收集后交给有资质单位回收处理。

在落实上述措施的前提条件下,本项目产生的固体废弃物不会对周围环境产生的明显的影响。

序号	贮存场 所(设 施) 名称	危险废 物名称	危险废 物类别	危险废物 代码	位置	占地面积	贮存方 式	贮存 能力	贮存 周期
1		废活性 炭	HW49	900-039-49			袋装	1.108t	一年
2	危险废 物贮存	废 UV 光管	HW29	900-023-29	首层	$8m^2$	袋装	0.04t	一年
3	场所	漆渣	HW12	900-252-12	角	81112	袋装	1.244t	一年
4		废包装 *材料	HW49	900-041-29			桶装	0.12t	一年

表7-18 本项目危险废物贮存场所基本情况表

(4) 其他固废

生产过程中使用原辅材料油漆等产生的废包装材料,约 0.12t/a,交由供应商回收。固体废物应按《广东省固体废物污染环境条例》中的有关规定进行处置,一般工业废弃物的临时堆放场应满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001 及环境保护部公告 2013 年第 36 号修改单)的要求,危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)及 2013 年修改单及《建设项目危险废物环境影响评价指南》(环保部公告 2017 年第 43 号)的要求。

根据《建设项目危险废物环境影响评价指南》(环保部公告 2017 年第 43 号)危

注: 若供应商不愿意回收废包装材料,则作为危险废物处理。

险废物贮存应关注"四防"(防风、防雨、防晒、防泄漏),明确防渗措施和泄漏收集措施,以及危险废物堆放方式、警示标识等方面内容。同时根据《危险废物贮存污染控制标准》(GB18597-2001)及2013年修改单的要求,做到防漏、防渗、防雨等措施。同时作好危险废物情况的记录,记录上注明危险废物的名称、来源、数量、特性和包装容器的类别、入库日期、存放库位、废物出库日期。

项目应强化废物收集、贮运、运输各环节的管理,杜绝固废在厂区内的散失、泄漏。做好固体废物在厂区内的收集和储存相关防护工作,收集后进行有效处置。建立完善的规章制度,以降低固体废物散落对周围环境的影响。

5、环境风险分析

《建设项目环境风险评价技术导则》(HJ/T169-2018)适用于涉及有毒有害和易燃 易爆危险物质生产、使用、储存(包括使用管线输运)的建设项目可能发生的突发性事故(不包括人为破坏及自然灾害引发的事故)的环境风险评价。本项目涉及的原辅材料、产品、污染物不属于《建设项目环境风险评价技术导则》(HJ/T169-2018)附录 B、《危险化学品目录(2015版)》、《化学品分类和标签规范(GB 30000.18-2013)》所列的有毒有害和易燃易爆等危险化学品。因此,本评价不开展环境风险评价。

6、土壤环境影响分析

根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964—2018)中附表A.1 土壤环境影响评价项目类别,本项目所属的行业类别2110木质家具制造,属于制造业中的其他用品制造,项目喷涂使用水性漆,属于附录A"设备制造、金属制品、汽车制造及其他用品制造"中的"其他",对应III类项目。根据土壤导则4.2.1可知,本项目涉及的土壤环境影响类型为污染影响型。

建设项目所在地周边的土壤环境敏感程度判别依据见表 7-19。

表 7-19 污染影响型敏感程度分级表 度 判别依据

敏感程度	判别依据
敏感	建设项目周边存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院等土壤环境敏感目标的
 较敏感	建设项目周边存在其他土壤环境敏感目标的
不敏感	其他情况

根据项目大气环境影响分析,项目主要大气污染物预测最大落地浓度范围内无土壤环境敏感目标,敏感程度评价等级为不敏感。

根据土壤环境影响评价项目类别、占地规模与敏感程度划分评价工作等级,具体划分细则见表7-20。

表7-20 污染影响型评价工作等级划分

	I类				II类			III类		
	大	中	小	大	中	小	大	中	小	
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级	
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	-	
不敏感	一级	二级	二级	二级	三级	三级	三级	-	-	

注: "-"表示可不开展土壤环境影响评价工作。

本项目对应III类项目,为污染影响型土壤环境影响类型,敏感程度评价等级为不敏感,占地规模为 2000 平方米,属小型。因此,本项目不开展土壤环境影响评价工作。

7、环保投资估算

项目投资 100 万元, 其中环保投资 34 万元, 约占总投资的 34%, 环保投资估算 见下表 7-21。

表7-21 环保投资估算表

序号	项目	防治措施	费用估算(万元)
1	废气	打磨粉尘经过水喷淋处理后通过 15m 排气筒 (G2) 排放; 木质粉尘经过布袋除尘处理后 车间无组织排放; 封边、组装和经水帘柜处理 后的喷涂废气经过喷淋+UV 光解+活性炭吸 附处理后与经过 UV 光解+活性炭吸附处理后 的贴皮废气一同通过 15m 排气筒 (G1) 排放	22
2	废水	生活污水经化粪池预处理后进入江海污水处理厂;水帘柜废水、喷淋废水循环使用,喷涂废气的水帘柜废水和喷淋废水一年清理两次	8
3	噪声治理	隔音和减振	1.5
4	固废	一般固体废物储存场所和危险废物储存场所	2.5
		总计	34

8、环保竣工验收

- (1) 落实项目环保投资,确保污染治理措施执行"三同时"和各项环保治理措施 达到设计要求;
 - (2) 向环保部门上报工程竣工试运行报告,组织进行环保设施试运行;
- (3) 办理竣工验收手续,包括向环保部门申报,进行竣工验收监测,编制环保竣工验收报告;
 - (4) 验收合格后,向当地环保部门进行排污申报登记,正式投产运行。

表 7-22 项目"三同时"环保设施验收一览表

			,	
序号	污染类别	彩	收内容	要求
1	废气	(G2)排放;木质汽车间无组织排放; 车间无组织排放; 理后的喷涂废气经 吸附处理后与经过	林处理后通过15m排气筒 粉尘经过布袋除尘处理后 封边、组装和经水帘柜处 过喷淋+UV光解+活性炭 UV光解+活性炭吸附处 司通过15m排气筒(G1) 排放	颗粒物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准和无组织排放监控浓度限值; VOCs参照执行广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段指气筒 VOCs 排放限值及证据,以排放监控点浓度限值;可以证据,以排放控制标准》(GB37822-2019):企业厂区内VOCs 无组织排放监控点次度应符合监控点处任意一次浓度限值:30mg/m³。
2	废水	水帘柜和喷淋废水	颁处理后进入江海污水处 理厂 外运交由零散废水处理单 位处理	生活污水执行广东省《水污染 排放限值》(DB44/26-2001) 第二时段三级标准和江海污水 处理厂接管标准的较严者
3	噪声	利用墙体遮挡、采 噪声产生和传播; 排在昼间进行,夜	生产设备,合理布局,用基础减震等措施控制项目主要把生产活动安间尽量不安排生产活动; 区绿化等	厂界噪声符合《工业企业厂界环境噪声排放标准》 (GB3096-2008)的3类声环境功能区标准
4	固废	边角料 粉尘渣 废 UV 光管 废活性炭 漆渣 生活垃圾 废包装材料	交废品回收单位回收处理 交给有资质单位回收处理 交环卫部门处理 交由供应商回收	不会对周围环境产生直接 影响

注: 若供应商不愿意回收废包装材料,则作为危险废物处理。

9、监测计划

环境监测是污染防治的重要工作内容,是实现环保措施达到预期效果的有效保证,为各级环保部门做好环境监督管理,以便客观地评估其项目营运时对环境的影响,确认其环保措施的有效性或改进的必要性。根据《排污单位自行监测技术指南 总则》(HJ819-2017),项目自行监测计划见下表。

表7-23 环境污染物自行监测计划表

项目	内容	监测因子	监测频次	执行排放标准		
	废气排气筒 (G1)	颗粒物、 VOCs		颗粒物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准: VOCs参照执行广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段排气筒VOCs排放限值		
废气	废气排气筒 (G2)	颗粒物	每年1次	颗粒物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准		
	厂界	颗粒物、 VOCs、	排放限值 颗粒物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准			
废水	生活污水	COD _{Cr} 、 BOD ₅ 、 SS、氨氮	每年1次	广东省《水污染排放限值》 (DB44/26-2001)第二时段三级标准和 江海污水处理厂接管标准的较严者		
噪声	项目边界	连续等效A 声级	每季度1次、 昼间监测	《工业企业厂界环境噪声排放标准》 (GB12348-2008)中3类标准		
固废	临时堆存设施情 况、处置情况	_	每天记录	符合环保要求		

表7-24 污染物排放清单

要			污染	排放口及	环境保护措施	排放量或排放	执行的环境标准		总量指标
素	污	染源	因子	其基本情 况	及主要运行参 数	浓度	标准来源	标准限值	(t/a)
		G1	VOCs	· 高度 15m,	直 机发气収集率 直 75%, 有机度	0.052t/a; 0.5mg/m ³	参照执行《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段标准	2.9kg/h; 30mg/m ³	
疝	有组织	排气筒	颗粒物	局及 15m, 排气口直 径 1m		0.011t/a; 0.1mg/m ³	广东省《大气污染物排放限值》 (DB44/27—2001)第二时段二级标准	2.9kg/h; 120mg/m ³	
废气		G2 排气 筒	颗粒物	高度 15m, 排气口直 径 0.25m	收集率 75%, 处理效率 80%	0.002t/a; 1.2mg/m ³	广东省《大气污染物排放限值》 (DB44/27—2001)第二时段二级标准	2.9kg/h; 120mg/m ³	,
	无组织	厂房	────────────────────────────────────	源强高度 一层 4.5m, 二层	木质粉尘经过 布袋除尘处理 后车间无组织 排放	0.02705t/a	《大气污染物排放限值》(DB44/27-2001)第 二时段无组织排放监控限值	1.0mg/m ³	VOCs 总 量为 0.190t/a, 颗粒物为
				9m 風秋 3500m ²	加强车间通风	0.138t/a	参照执行《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)	2.0mg/m ³	0.04005t/a
			废水量			216t/a			
			$\mathrm{COD}_{\mathrm{Cr}}$			0.048t/a	广东省地方标准《水污染物排放限值》	220mg/L	
	生活	5污水	BOD ₅	/	化粪池	0.022t/a	(GB44/26-2001)中第二时段三级标准和江海	100mg/L	
废水			SS	 		0.026t/a	污水处理厂接管标准的较严者后	150mg/L	
八八			氨氮			0.004t/a		24mg/L	
	生产	一废水	水帘柜和喷 淋废水	/	外运交由零散 废水处理单位 处理	12t/a	/	/	

噪声	车床等设 备	厂界噪声	采用低噪 声设备	采取减震、消 声、厂房隔声 等措施	昼间 ≤65dB[A]、 夜间 ≤55dB[A]	GB12348-2008 中 3 类排放标准	昼间 ≤65dB[A]、 夜间 ≤55dB[A]	
	生活	5 垃圾	一般固体 废物	交环卫部门清 运	0t/a			
	边	角料	一般固体 废物	交废品回收单 位回收处理	0t/a			
	粉	粉尘渣		交废品回收单 位回收处理	0t/a			
固	废 い	V 光管	危险废物 HW29	交危废单位处 理	0t/a			
废	废活	舌性炭	危险废物 HW49	交危废单位处 理	0t/a			
	渇	秦 渣	危险废物 HW12	交危废单位处 理	0t/a			
	废包	装材料	其他固废/ 危险废物 HW49	交供应商回 收,若供应商 不愿回收,则 按危废处理	0t/a			

八、建设项目拟采取的防治措施及预期治理效果

内容 类型	排放源 (编号)	污染物名称	防治措施	预期治理效果
水污染物	生活污水	$\mathrm{COD}_{\mathrm{Cr}}$	经化粪池预处理	广东省《水污染排放限值》 (DB44/26-2001)第二时段 三级标准和江海污水处理厂 接管标准的较严者
		BOD ₅		
		SS		
		NH ₃ -N		
	生产废水	水帘柜和喷淋 废水	外运交由零散废水处理单位处理	
大气污染物	开料、雕 刻、钻孔	颗粒物	布袋除尘处理后车间 内排放	《大气污染物排放限值》 (DB44/27-2001)中第二时 段无组织排放监控浓度限值
	焊接		加强通风	
	喷涂、封 边、贴 皮、组装	VOCs	封边、组装和经水帘 柜处理后的喷涂废气 经过喷淋+UV 光解+ 活性炭吸附处理后与 经过 UV 光解+活性	广东省《家具制造行业挥发性有机化合物排放标准》 (DB44/814-2010)II时段排气筒 VOCs 排放限值及无组织排放监控点浓度限值
	喷涂	颗粒物	炭吸附处理后的贴皮 废气一同通过15m排 气筒(G1)排放	《大气污染物排放限值》 (DB44/27-2001)中第二时 段二级标准
固体废物	生活垃圾		交环卫部门清运处置	
	工业固废	粉尘渣	交废品回收单位回收 处理	符合相关环保要求
		边角料		
	危险废物	废 UV 光管	交给有资质单位回收 处理	
		废活性炭		
		漆渣		
	其他固 废	废包装材料	交由供应商回收,若 供应商不愿回收,则 按危废处理	
噪声	运营期 噪声	主要来源于项目各生产设备在运行期间产生噪声,其噪声强度约为70~90dB(A),噪声经厂房和围墙屏蔽衰减作用后,有明显降低,正常情况下项目各厂界噪声可以达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准,对环境影响不大。		
生态保护措施及预期效果 本项目排放的废水、噪声、固废经处理后达标排放,对该地区原有的生态环境影响不大。				

九、结论与建议

1、项目概况

江门市江海区龙城展柜装饰设计有限公司投资 100 万元,选址于江门市江海区北苑路 1号 3幢(地理位置中心坐标: N22.568779°, E113.166752°)从事展柜的生产加工,项目占地面积 2000 平方米,建筑面积 3500 平方米,产品方案为年产展柜 1000套。

2、项目建设的可行性

(1)产业政策

根据《产业结构调整指导目录(2019年本)》和《市场准入负面清单(2019年本)》项目产品、工艺、设备和规模均不属于上述目录、清单的限制类、禁止(淘汰)类项目,故项目符合相关产业政策要求。

(2) 规划相符性

根据建设单位提供土地证明,项目选址属于工业用地,不属于废水、废气和噪声的禁排区域,选址符合规划要求。

(3) 环保政策相符性

对比有关环保政策,本项目符合有关要求。

(4) 三线一单相符性

本工程符合"三线一单"要求。

3、建设项目区域环境质量现状

- (1) 环境空气:根据《2019年江门市环境质量状况 (公报)》中 2019年度中江海区空气质量监测数据进行评价,江海区项目所在区域 SO₂、NO₂、PM₁₀、PM_{2.5}、CO和 O₃ 六项污染物达标即为环境空气质量达标,项目所在区域 O₃ 未达到《环境空气质量标准》(GB3095-2012)及其修改单中的二级标准,判定项目所在区域为不达标区。根据引用 TSP、TVOC 监测数据,项目所在地 TSP 达到《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值,TVOC 达到《环境影响评价技术导则-大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值。
 - (2) 地表水: 麻园河评价河段水质指标中 COD_{Cr}、BOD₅、氨氮、总磷、粪大肠

菌群均不能达到《地表水环境质量标准》(GB3838-2002)V类标准,其他水质指标能达到《地表水环境质量标准》(GB3838-2002)V类标准,说明麻园河水质未能达标,其主要是受所在区域农业污染影响所致。

(3) 声环境质量现状:项目所在区域符合声环境《声环境质量标准》(GB3096-2008)3 类标准。声环境现状良好。

4、环境影响评价结论

(1) 施工期对环境的影响

项目利用已建成厂房进行建设,施工期仅为设备安装。本次评价不再分析施工期 污染问题。

- (2) 运营期对环境的影响
- ①水环境影响评价结论

本项目水帘柜废水和喷淋水循环使用,喷涂废气的水帘柜废水和喷淋废水一年定期排放两次,合计排放量为12t/a,生产废水外运交由零散废水处理单位处理。因此本项目外排废水主要为生活污水,排放量为216t/a,生活污水主要污染物为COD_{Cr}、BOD₅、SS和氨氮。生活污水经化粪池预处理后达到达到广东省《水污染排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂接管标准的较严者,进入江海污水处理厂。因此,项目运营后基本不会对周围环境造成影响。

②大气环境影响分析结论

废气污染源主要为开料、雕刻、打孔产生的木质粉尘,打磨产生的金属粉尘,焊接烟尘,喷涂产生的漆雾和有机废气,封边、贴皮工序产生的有机废气。

根据工程分析可知,根据工程分析可知,项目木质粉尘经过布袋除尘器处理后车间内排放,无组织排放量为 0.024t/a;打磨产生的粉尘经过水喷淋处理后通过 15m 排气筒(G2)排放,有组织排放量为 0.002t/a,排放浓度为 1.2mg/m³;焊接烟尘车间内无组织排放,排放量为 0.05kg/a;经水帘柜处理后的喷涂废气和封边和组装工序产生的有机废气一同经过喷淋+UV 光解+活性炭吸附处理后,与经过 UV 光解+活性炭处理后的贴皮工序有机废气一同通过 15m 排气筒(G1)排放,合计有组织排放量为 VOCs 0.052t/a,颗粒物 0.011t/a,排放浓度为 VOCs 0.5mg/m³,颗粒物 0.1mg/m³,无组织排放量为 VOCs 0.52t/a,颗粒物 0.011t/a,排放浓度为 VOCs 0.5mg/m³,颗粒物 0.1mg/m³,无组织排放量为 VOCs 0.58t/a,喷漆房内漆雾自然沉降。颗粒物可符合广东省《大气污染物排

放限值》(DB44/27-2001)第二时段二级标准和无组织排放监控浓度限值; VOCs可符合广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)II时段排气筒 VOCs 排放限值及无组织排放监控点浓度限值;厂内 VOCs 无组织排放可符合《挥发性有机物无组织排放控制标准》(GB 37822-2019):企业厂区内 VOCs 无组织排放监控点浓度限值:30mg/m³,对周边环境影响不大。

综上,项目的建设对周边环境影响不大。

③声环境影响评价结论

本项目噪声主要来源于各种生产设备运转时产生的噪声,根据类比资料,估计声源声级约70~85dB(A),在采取合理布局、减振安装、建筑物隔声等措施,再通过距离衰减后,厂界可达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求,对周围声环境影响很小。

④固体废物环境影响分析

项目产生的生活垃圾交由环卫部门定期清运处置;废边角料和除尘设施器收集的 收集交废品回收单位回收处理;废包装材料交由供应商回收,若供应商不愿回收,则 按危废处理;漆渣、废 UV 光管和废活性炭收集后交给有资质单位回收处理。项目固 体废物经上述"资源化、减量化、无害化"处置后,可将固废对周围环境产生的影响减 少到最低限度,因此本项目产生的固体废物不会对周围环境造成不良影响。

5、总量合理性分析

①水污染物排放总量控制建议指标

本项目生活污水进入江海污水处理厂,控制总量由污水厂内部调配,本报告建议 不设置总量控制指标。

②大气污染物排放总量控制建议指标

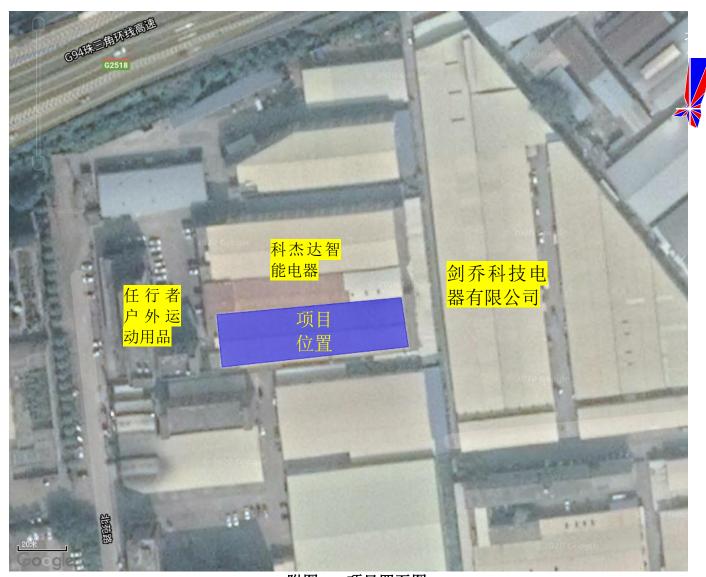
本项目主要污染物建议执行总量控制指标: VOCs0.190t/a (有组织排放 0.052t/a, 无组织排放 0.138t/a)。

建议:

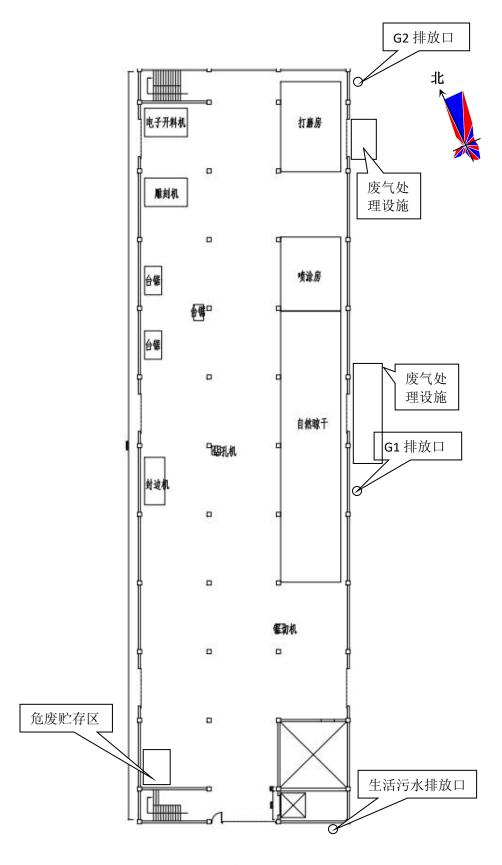
(1) 严格按照申报内容进行生产,企业生产过程中如原材料和产品方案、用量、规模、生产工艺等发生变化,应及时向环保主管部门申报。

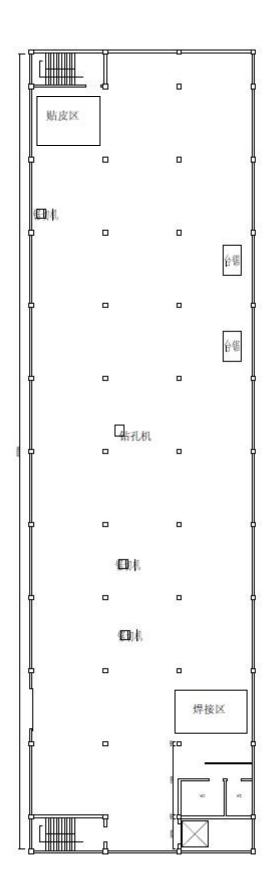
- (2)建议建设单位对产生较大噪声的生产设备采取隔音和减振等措施,并进行合理放置,定期检修,降低噪声对项目周围声环境的影响。
 - (3) 项目建设单位应严格控制工作时间, 防止噪音扰民。
 - (4) 加强对员工的环保教育工作,增强员工环保意识。
- (5)加强生产管理,提高员工生产操作的规范性,以减少不必要的物料浪费现象从而减少污染物的产生量;并积极探索新工艺,在保证产品质量的前提下,进一步减少产品的能耗物耗。
- (6)建设单位为加强对工业废物的管理,建设专门的废品站分区暂存各类工业废物。废品站单独设置在室内,远离人员活动区场所,并设置明显的警示标识等。废品站内各类危险废物和一般工业废物分区存放,危险废物存放区地面设置防漏裙脚或储漏盘。

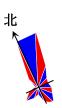
总结论:


根据上述分析,按现有报建功能和规模,该项目的建设有较好的社会效益和经济效益。本项目建成后对周围环境造成废水、噪声污染较小,建设单位若能在建成后切实落实本环评提出的各项环境污染防治措施,落实"三同时"制度,加强环境管理,保证环保投资的投入,确保污染物达标排放,则本项目建成投入使用后,对环境的影响是可以接受的。

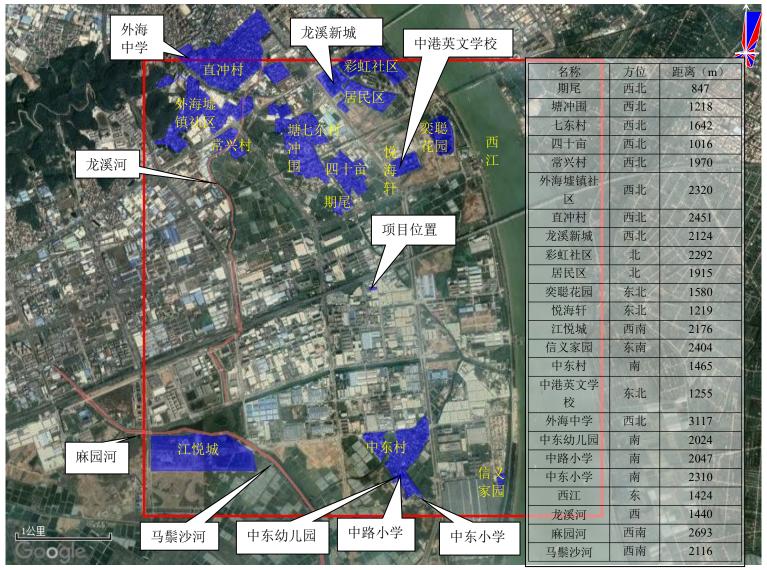
从环境保护角度而言, 本项目的建设是可行的。


环评单位: 项目负责人: 日 期78412

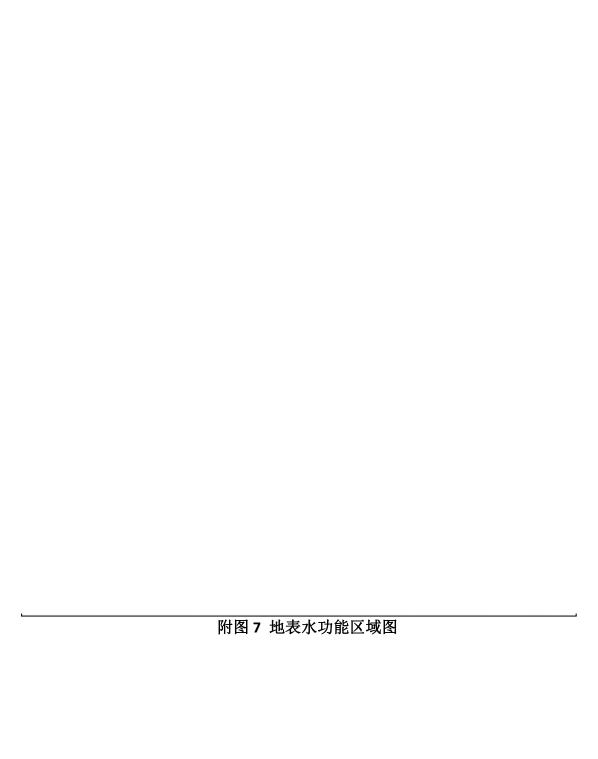

附图 1 项目地理位置图



附图 2 项目四至图



首层 附图 3 项目首层平面布置图


附图 3 项目二层平面布置图

附图 4 项目敏感点分布图

附图 5 大气环境功能区划图

附图 8 声环境功能区划图

附图 9 江门市城市总体规划图

附图 10 江海污水处理厂纳污范围图

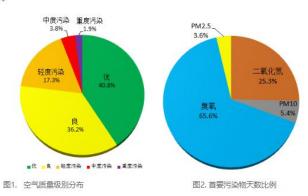
附件1 营业执照

附件 2 法人身份证

附件 3 土地使用证明

附件 4 租赁合同

附件 5 项目引用监测报告及公报截图


公报截图:

一、空气质量

(一) 国家直管监测站点空气质量

2019年度,细颗粒物(PM_{2.5})年平均浓度为27微克/立方米,同比下降6.9%;可吸入颗粒物(PM₁₀)年均浓度为49微克/立方米,同比下降3.9%;二氧化硫年均浓度为7微克/立方米,同比下降12.5%;二氧化氮年均浓度为32微克/立方米,同比持平;一氧化碳日均值第95百分位数浓度(CO-95per)为1.3毫克/立方米,同比上升18.2%;臭氧日最大8小时平均第90百分位数浓度(O_{3-8h}-90per)为198微克/立方米,同比上升17.9%;除臭氧外,其余五项空气污染物年均浓度均达到国家二级标准限值要求。

空气质量优良天数比例为77.0%,同比下降7.9个百分点。在全年有效监测天数中,优占40.8%(149天),良占36.2%(132天),轻度污染占17.3%(63天),中度污染占3.8%(14天),重度污染占1.9%(7天),无严重污染天气,详见图1。首要污染物为臭氧,其作为每日首要污染物的天数比例为65.6%(良及以上等级天数共计221天),二氧化氮及PM₁₀作为首要污染物的天数比例分别为25.3%、5.4%,详见图2。

(二) 各市 (区) 空气质量

各市(区)空气质量优良天数比例在76.7% (蓬江区)----91.2% (恩平市)之间。以空气综合质量指数排名,台山市位列第一位,其次分别是开平、恩平、新会、蓬江、鹤山、江海;除台山外,蓬江、江海、新会、开平、鹤山和恩平空气综合质量指数同比均有所上升。以空气质量改善程度排名,台山市位列第一,空气综合质量指数同比下降1.8%,详见表1。

区域	二氧化	二氧化氮	PM ₁₀	一氧化碳	臭氧	PM _{2,5}	优良天 数比例 (%)	综合指 数	综合指数排名	综合指数 同比变化 率	空气质量同 比 变化程度排 名
蓬江区	8	34	52	1.2	198	27	76.7	4.03	5	2.5	3
江海区	11	37	57	1.2	182	30	81.0	4.21	7	19.6	7
新会区	7	29	48	1.4	178	26	84.1	3.73	4	3.6	4
台山市	9	22	41	1.3	152	26	90.7	3.30	1	-1.8	1
开平市	10	23	48	1.3	172	25	87.4	3.55	2	1.7	2
鹤山市	11	33	51	1.4	188	31	80.3	4.15	6	4.3	5
恩平市	12	25	51	1.7	156	24	91.2	3.64	3	6.1	6
年均二级标 准 GB3095- 2012	60	40	70	4.0	160	35	-	-	-	2	

表1 2019年度各市 (区) 空气质量状况

三、声环境质量

江门市区昼间区域环境噪声等效声级平均值56.98分贝,优于国家声环境功能区2类区(居住、商业、工业混杂)昼间标准;道路交通干线两侧昼间噪声质量处于较好水平,等效声级为69.94分贝,符合国家声环境功能区4类区昼间标准(城市交通干线两侧区域)。

注: 1、除一氧化碳浓度单位为鼋克/立方米外,其他监测项目浓度单位为微克/立方米;

^{2、}综合指数变化率单位为百分比,"+"表示空气质量变差,"-"表示空气质量改善。

附件 6 项目相关原料检测报告

附件 7 修改意见对照表

《江门市江海区龙城展柜装饰设计有限公司年产展柜 1000 套建设项目》修改意见对照表

		1/2
序号	修改意见	修改意见回复以及对应页码
1	补充热熔胶的用量及成分及理化性质分析; 补充水	己补充: 热熔胶用量为 1 吨/年,主要成分为 EVA (聚乙烯-醋酸乙烯共聚树脂)、碳酸钙、
	性漆成分,明确在即用状态下的 VOC 含量(g/L),	树脂、抗氧化剂;水性漆主要成分为丙烯酸酯共聚物、无铅颜料、添加剂和水。见P2-3。
	判断是否属于低 VOCs 成分涂料,是否与《广东省打	关于其 VOC 含量等,已在政策相符性中补充(见 P6)。
	嬴蓝天保卫战实施方案(2018-2020年)》(粤府	
	〔2018〕128 号)》等文件的中的低挥发涂料相符。	
2	具体细化产品方案,明确产品规格及工艺,明确喷	己补充,产品具体份为柜台类和墙身类,具体规格及喷涂面积见表 1-5 备注,经与企业核
	涂面积,进一步复核水性漆使用量计算参数。	实,喷涂为喷一层底漆,再喷一层面漆。水性漆使用量计算参数见表 1-4。见 P3-4。
3	结合生产工艺重新复核主要设备一览表	已修改,补充设备规格及型号以及喷漆房参数。见 P4。
	复核主要设备一览表,设备有所遗漏。细化生产设	
	备一览表,明确设备规格/型号、补充漆房数量及规	,
	格,使用能用、配备水帘柜规格及喷枪数量等。	
4	补充《重点行业挥发性有机物综合治理方案》(环	己补充:《重点行业挥发性有机物综合治理方案》(环大气(2019)53号):"大力推进源头
	大气〔2019〕53号〕的政策相符性,完善相关环保	替代。通过使用水性、粉末、高固体分、无溶剂、辐射固化等低 VOCs 含量的涂料,水性、
	政策相符性分析。	辐射固化、植物基等低 VOCs 含量的油墨,水基、热熔、无溶剂、辐射固化、改性、生物降
		解等低 VOCs 含量的胶粘剂,以及低 VOCs 含量、低反应活性的清洗剂等,替代溶剂型涂料、

		TE - W
	*	油墨、胶粘剂、清洗剂等,从源头减少 VOCs 产生。"
1		本项目使用水性漆,比例为100%,根据附件中的检验报告可知,挥发性有机化合物含
		量为 40g/L,符合《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020)中水
		性涂料-木器涂料-色漆的 VOC 含量的要求: ≤220g/L。见 P6。
5	明确纳污水体	己补充,项目位于江海污水处理厂纳污范围内,江海污水处理厂纳污水体为麻园河。见 P8。
6	1、完善生产工艺流程图,明确各工序对应的物料、	1、己按照要求修改生产工艺流程图,见 P20
	设备或设施。	2、己修改工艺流程简述,见 P21-22。经与企业核实,喷涂为喷一层底漆、一层面漆。
	2、工艺流程描述中对各工序的介绍应与工艺流程图	3、己补充木料打磨和烘干/晾干工序,核实木工胶用于贴皮,玻璃胶用于黏合玻璃,热烙
	一致,同时核实各工序的污染物产生情况,细化现	胶用于封边。
	有项目生产工艺介绍,明确涂装工序的具体内容。	
	3、补充木料打磨工序、烘/晾干等工序;进一步核	
	实木工胶、玻璃胶、热熔胶等对应的工序。	
7	1、复核木工粉尘的收集效率及处理效率;补充木工	1、木材开料和雕刻设备均配有除尘器,钻孔机则无,因此采用移动式布袋除尘器收集处理
	打磨粉尘(含漆)的工程分析。	钻孔产生的粉尘。根据《袋式除尘器技术要求》(GB/T6719-2009),袋式除尘器除尘效率≥
	2、补充热熔胶的工程分析;核实玻璃胶的产污依据。	99%,除尘器和设备基本是一对一或者设备自带的,对设备使用时产生的粉尘具有较好的收
	3、复核喷涂有机废气的工程分析,细化喷涂生产线、	集效果,但考虑实际操作中的不确定因素,项目移动式布袋除尘器收集效率按80%进行计算。
	车间的密闭情况介绍,细化废气收集系统和收集方	见 P23。已补充打磨木材产生的粉尘的工程分析,见打磨粉尘部分。见 P24。

	式介绍,从而核实废气的收集效率。	2、己补充热烙胶的工程分析,见封边工序产生的有机废气,P26。已核实,使用的玻璃胶
		主要成分为羟基聚二甲基硅氧烷,对应本体型有机硅类。
		3、已细化喷涂、烘干车间等描述:喷漆、烘干/晾干工序分别设置在独立的密闭房间内之喷
		漆房和晾干房,烘干工序的烘干炉设置在晾干房内),喷漆房、自然晾干房和烘干炉设置密
		封和负压抽风,参考《广东省生态环境厅关于印发重点行业挥发性有机物排放量计算方法
		的通知》(粤环函〔2019〕243号),采用全密闭式负压排放的方式,即 VOCs 产生源设置在
		封闭空间内,所有开口处,包括人和物料进出口处呈负压时,有机废气的收集效率可达 95%。
		考虑到喷漆房、晾干房因员工进出以及烘干炉设备开关门拿取工件过程中会有少量废气逸
		散,因此收集效率按保守估算,取 90%。见 P25。
8	进一步加强粉尘无组织的管控,复核是否有自带除	己核实,木材开料和雕刻设备均配有除尘器,钻孔机则无,因此采用移动式布袋除尘器收
	尘器等设备	集处理钻孔产生的粉尘。
	喷漆后打磨的粉尘含油漆, 补充相关分析	己补充打磨木材产生的粉尘的工程分析,见打磨粉尘部分。见 P24。
9	三级布袋才做到 99%, 重新复核	已核实,根据《袋式除尘器技术要求》(GB/T6719-2009),织造与非织造滤料的静态和动态
		除尘效率均能达到 99%。
10	金属粉尘比木工粉尘的产生量相差50倍,但是金属	木质粉尘产生的设备分布一二层,分布于各处,且木质粉尘的产生设备大多自带有除尘设
	粉尘进行有组织排放。这个合理性是什么?	备,仅钻孔机无,建设单位配备了移动式布袋除尘器收集处理。而打磨单独设立了一个房
		间,利于收集处理,能进行有组织排放。

, ,

1、明确喷淋废水的成分,补充可交由零散废水的可	1、己补充,水帘柜废水和喷淋废水主要污染物为 COD, 经收集后定期交由零散工业废水处
行性分析。	理单位统一处理。见 P23。可行性分析见环境影响分析章节 P36。
2、复核废油漆桶的分类依据及处理处置方式。	2、己补充,根据《固体废物鉴别标准 通则》(GB34330-2017): "任何不需要修复和加
3、复核木工打磨粉尘的分类依据及处理处置方式。	工即可用于原始用途的物质,可不作为固体废物管理"。故废包装材料直接交由供应商回
	收,不当作固废管理。若供应商不愿意回收,则作为危险废物处理,属于《国家危险废物
	名录》(2021年)中的HW49 900-041-49含有或沾染毒性、感染性危险废物的废弃包装物、
	容器、过滤吸附介质,交给有资质单位回收处理。见P30。
	3、已将打磨工序废气处理装置收集的粉尘归入漆渣中。见 P30。
复核废活性炭产生量	已修改,废活性炭产生量为 1.108t/a。根据《国家危险废物名录》(2021年),废活性炭属
	于编号为 HW49 的危险废物,废物代码为 900-039-49 烟气、VOCs 治理过程(不包括餐饮
	行业油烟治理过程)产生的废活性炭,化学原料和化学制品脱色(不包括有机合成食品添
	加剂脱色)、除杂、净化过程产生的废活性炭(不包括 900-405-06、772-005-18、261-053-29、
	265-002-29 、384-003-29、387-001-29 类废物),交给有资质单位回收处理。见 P30。
进一步复核土壤环境影响评价等级判定,请按照导	根据省厅回复:使用水性漆的项目,可归为"设备制造、金属制品、汽车制造及其他用品
则要求重新判定土壤评价等级,补充土壤现状监测	制造"行业中的Ⅲ类项目(具体截图见下方)。本项目为污染影响型土壤环境影响类型,敏
并根据评价等级完善土壤环境影响评价内容。	感程度评价等级为不敏感,占地规模为2000平方米,属小型。因此,本项目不开展土壤环
	境影响评价工作。见 P46-47。
全 2 3 3 1 1	了性分析。 、 复核废油漆桶的分类依据及处理处置方式。 、 复核木工打磨粉尘的分类依据及处理处置方式。 、 复核木工打磨粉尘的分类依据及处理处置方式。 夏核废活性炭产生量 进一步复核土壤环境影响评价等级判定;请按照导 则要求重新判定土壤评价等级,补充土壤现状监测

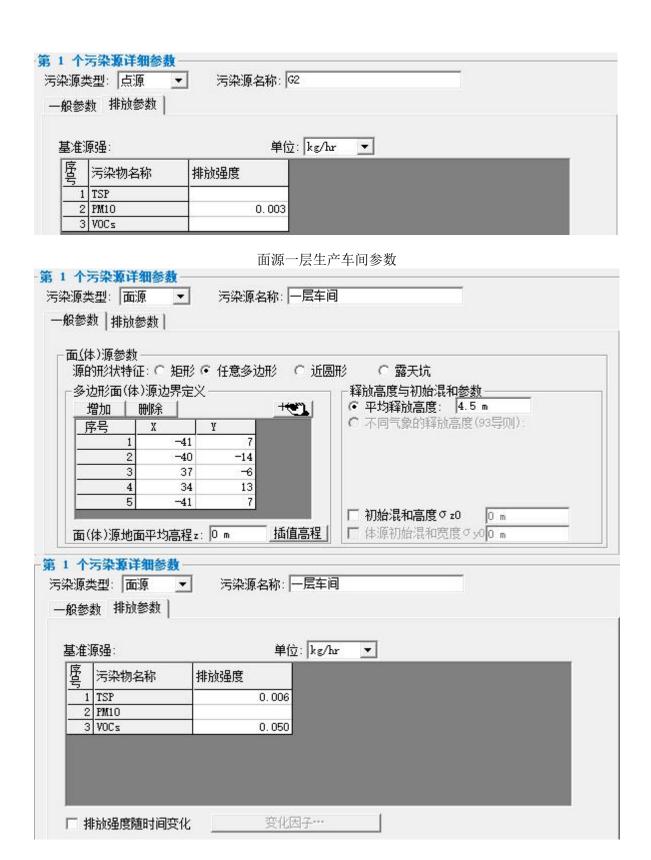
-									
1	更新编制页类别	已更新。							
2	补充自然资源局出具的可作二类工业用地的证明	己补充,根据江门市江海区自然资源局出局《关于对江门市欧宁照明灯饰有限公司《申记》							
		函》的复函》(江海自然资函[2020]1254号),同意该用地暂按二类工业用地使用,证明见							
		附件 3。见 P5、71							
补充	胶粘剂也要判定低挥发 补充《广东省打赢蓝天保卫战实施方案(2018-2020	己补充:《广东省打赢蓝天保卫战实施方案(2018-2020年)》:"珠三角地区禁止新建生产和							
	年)》的相符性分析	使高 VOCs 含量溶剂型涂料、油墨、胶粘剂、清洗剂等项目(共性工厂除外)。""重点推广							
		低 VOCs 含量、底反应活性的原辅材料和产品,到 2020 年,印刷、家具制造、工业涂装重点工业企业的低毒、低(无)VOCs 含量、高固份原辅材料使用比例大幅提升。"							
		生产中使用胶粘剂为木工胶、热熔胶和玻璃胶。根据检验报告,木工胶总挥发性有机物含							
		量为 21g/L,符合《胶粘剂挥发性有机化合物限量》(GB33372-2020)中水基型胶粘剂 VO							
		含量-聚乙酸乙酯类-木工与家具领域:100g/L 的要求,玻璃胶主要成分为羟基聚二甲基码							
		氧烷、填料、色料和酸性硅烷交联剂,热熔胶主要成分为 EVA(聚乙烯-醋酸乙烯共聚树脂)、							
		碳酸钙、树脂、抗氧化剂,分别对应于《胶粘剂挥发性有机化合物限量》(GB33372-2020							
		中本体型-有机硅类和本体型-热塑类,根据《胶粘剂挥发性有机化合物限量							
		(GB33372-2020)中提及"通常水基型胶粘剂和本体型胶粘剂为低 VOC 型胶粘剂",因此项							
		目所用胶粘剂均为低 VOC 型胶粘剂,符合文件要求。见 P6-7							

4	核实水帘柜废水和喷淋废水更换频次	水帘柜、水喷淋塔主要是去除废气中的颗粒物,对水质要求不高,清渣后就可以重复使用。
		根据企业目前的经验,一年更换两次,可以满足生产要求。
5	核实有机废气处理效率	已核实,参考广东省的印刷行业挥发性有机废气治理技术指南,UV光解的去除效率在
		50-95%之间,吸附法的去除效率在 50-80%之间。由于 UV 光解法存在反应速率慢、光子效
		率低、催化剂易失活的缺点,其处理效率一般按保守估算取 50%。本项目拟采用蜂窝式纤
		维活性炭,去除效率按80%计算,则整套系统的去除率可达90%。
6	核实是否存在风险物质	经核实,本项目原辅料、产品和污染物不涉及风险物质。
7	补充修改意见对照表作为附件,并加盖公章	己补充。

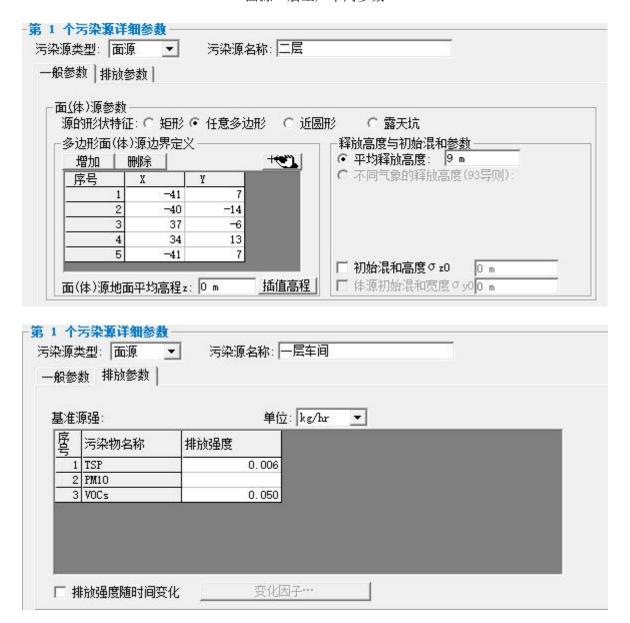
建设项目地表水环境影响评价自查表

工	作内容	自查项目	∃								
	影响类 型	水污染影响型 ☑;水文要素影响型 □									
影响	水环境 保护目 标	饮用水水源保护区 □; 饮用水取水口 □; 涉重要湿地 □; 重点保护与珍稀水生生物的栖及索饵场、越冬场和洄游通道、天然渔场等涉水的风景名胜区 □; 其他 ☑	息地 口; 重要水生生物的自然产卵场								
识别	影响途	水污染影响型	水文要素影	响型							
力り	径	直接排放 ☑;间接排放 □;其他 □	水温 □; 径流 □; 水均	或面积 □							
	影响因 子	持久性污染物 □; 有毒有害污染物 □; 非 持久性污染物 ☑; pH值 □; 热污染 □; 富营养化 □; 其他 □	水温 □; 水位(水深) 流量 □; 其他 □	□; 流速 □;							
- }	价等级	水污染影响型	水文要素影	响型							
VI	N 43%	一级 □; 二级 □; 三级A □; 三级B ☑	一级 🗅; 二级 🗅; 三级	-							
		调查项目	数据来源								
	区域污 染源	已建 □; 在建 □; 拟替代的污染源 □	排污许可证 □; 环评 □; 环保验收 □; 既有实测 □; 现场监测 □; 入河排放口数据 □; 其他 □								
	受影响	调查时期	数据来源								
	水体水 环境质 量	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □春季 ☑; 夏季 □; 秋季 □; 冬 季 □	生态环境保护主管部门 口; 补充监测 ☑; 其他 □								
现状调查	区域水 资源开 发利用 状况	未开发 □; 开发量40%以下 □; 开发量40%	以上 口								
旦	水文情	调查时期	数据来源	Į.							
	势调查	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □春季 □; 夏季 □; 秋季 □; 冬季 □	水行政主管部门 □; 补充监测 □; 其他 □								
		监测时期	监测因子	监测断面或 点位							
	补充监测	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □春季 □; 夏季 □; 秋季 □; 冬季 □	pH、DO、COD _{Cr} 、 BOD ₅ 、氨氮、总磷、 石油类、阴离子表面 活性剂、粪大肠菌群 等	监测断面或 点位个数() 个							
	评价范 围	河流:长度()km;湖库、河口及近岸海	域: 面积() km²								
现状	评价因 子										
评价	评价标 准	河流、湖库、河口: I类 □; II类 □; III类 近岸海域: 第一类 □; 第二类 □; 第三类 □ 规划年评价标准()									
	评价时期	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □春季 □; 夏季 □; 秋季 □; 冬季									

	评价结论	底泥污染评价 □ 不达标 水资源与开发利用程度及其水文情势评价 □ 水环境质量回顾评价 □ 流域 (区域) 水资源 (包括水能资源) 与开发利用总体状况、生态 流量管理要求与现状满足程度、建设项目占用水域空间的水流状况 与河湖演变状况 □										
	预测范 围	河流:长度	() km; 湖)	库、河口及近岸海 均	或: 面积() kr	m^2						
显么	预测因 子											
影响	 预测时	丰水期 □:			П							
预	期			□; 冬季 □设计水								
测	预测情			□;服务期满后 □□								
	景 预测方		减缓措施方第 解析解 □;	≅ □; 区(流)域₹ 財研 □	「境质量改善目	标要求情景						
	法		#切#□; <i>;</i> 式 □: 其他									
	水控水影缓有评别和境减施性	区(流)域	区(流)域水环境质量改善目标 口; 替代削减源 口									
影响评价	水环境 影响评 价	水环足境工工场,水环足域,水水,大水水,大水水,大水水,大水水,水水,水水,水水,水水,水水,水水,水水	排放口混合区外满足水环境管理要求 □ 水环境功能区或水功能区、近岸海域环境功能区水质达标 □ 满足水环境保护目标水域水环境质量要求 □ 水环境控制单元或断面水质达标 □ 满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染物排放满足等量或减量替代要求 □ 满足区(流)域水环境质量改善目标要求 □ 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评价、生态流量符合性评价 □ 对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价 □									
		污染物	 勿名称	排放量/((t/a)	排放浓度	度/(mg/L)					
	污染源		$\mathrm{COD}_{\mathrm{Cr}}$	0.048	}		220					
	排放量	WS-01	BOD ₅	0.022			100					
	核算	., 5 51	SS	0.026			120					
	# 10.0元		氨氮	0.004		TIL	20					
	替代源 排放情 况											


								(t/					
								a)					
	生态流	生态流量:	一般水期()	m³/s; 鱼	类繁殖期	$() m^3/s;$	其他()	m^3/s					
	量确定	生态水位:	一般水期()	m; 鱼类	繁殖期() m; 其作	也 () m						
	环保措	保措 污水处理设施 □; 水文减缓设施 □; 生态流量保障设施 □; 区域削减 □;											
	施	依托其他工	依托其他工程措施 □; 其他 □										
17.	监测计	/		环境质量			污染源						
防治		监测方式	手动 口;	自动口;	无监测 ☑	1 手动	力□; 自范	功 🖙	无监测 ☑				
措	划	监测点位											
施		监测因子											
	污染物		,			•							
	排放清												
	单												
评	价结论	可以接受 ☑	7;不可以接	受 🗆									
注:	"口"为勾	选项,可√;'	'()"为内容	填写项;	"备注"为	其他补充区	内容。						

大气环境影响评价自查表


		<u> </u>	ישכיו	タンコ	111	וע	<u> </u>	<u> </u>					
	工作内容						自查項	页目					
评价等级	一级□					二组	₹ 		三级口				
与范围	评价范围	边长	=50k	m□		边长 5~50km□				边长=5km☑			
	SO2+NOx排放量	≥2	000t/a	l 🗆			500~20	00t/a			<	500t/	a□
评价因子	评价因子	基本污染 P		_	NO_2		M_{10}				次 PN 二次P		
评价标准	评价标准	国家标准团					方标 註口	β	附录 D	其他标准□			
	环境功能区	_	类区i				二类	XV		_	一类区	【和二	类区□
	评价基准年						(2019	年)					
现状评价	环境空气质量 现状调查数据来 源	长期例	亍监测	削数据	Ē0	主	管部门 测数		的监		现状	补充。	监测□
	现状评价		达	标区						— 不过	と标区		
污染源 调查	调查内容	本项目正常排放源☑ 本项目非正常排放源□ 现有污染源□			拟	代替的 染源□	J万 拟建		上在建 建项目 杂源□	污	区北	或污染源 □	
	预测模型	AERM ADM OD□ □			AUS L200							- 1	其他☑
	预测范围	边长≥50km□				边长 5~50km□				边长=5km☑			
	预测因子	预测因子(VOCs、颗粒物))	包括二次 PM2.5口					
	1分分101)	不包括二次 PM2.5☑					
大气环境 影响预测	正常排放短期浓度 贡献值	C 本项目最大占标率≤1				.00%□ C 本项			目最大占标率>100%□				
与评价	正常排放年均浓度 贡献值	一类区 С本项目最大占				ī标率≤10%□ C z			太项目最大标率>10%□				
	贝魞徂	│二类区 │ _{C 本项目} 最大占核				标率≤30%□				云项目最大标率>30%□			
	非正常排放 1h 浓度 贡献值	非正常持 时长()		C	非正常	占村	示率≤10						
	保证率日平均浓度 和年平均浓度叠加 值		C 叠	C _{叠加} 达标□				C _{叠加} 不达标□					
	区域环境质量的整 体变化情况	K≤-20%□							K>	-20%	, D		
环境监测 计划	污染源监测	监测因子	: (V 並物)	OCs	、颗		组织废组织废				无	监测	
VI 200	环境质量检测	监测因子: () 监测点位					2数(()		无	监测		
	环境影响				可以	接受	\checkmark	不可	以接受	芝口			
亚价生込	大气环境防护距离					设大	气环均	意防护	距离				
评价结论	污染源年排放量	SO ₂ : (/) t/a NO _X : (/) t/a				颗粒物: (0.09775) 总 V				VOC	s: (0	.174) t/a	

点源 G1 参数:

第 1 个污染源详细参数	- 2 35.
污染源类型: 点源 ▼ 污染源名称: G1	
一般参数 排放参数	
171702-001	
	M 12 12 12 1
	」 插值高程
一计算烟筒有效高度He	
烟筒几何高度: 15 m	烟筒有效高度He輸入方法: 自动计算 ▼
烟筒出口内径: 1 m	烟气参数代表的烟气状态:「实际状态 ▼
⑥ 输入烟气流量: 44000 m^3/hr ▼⑥ 输入烟气流速: 15.56182 m/s	
INDEX OF THE TOTAL PROPERTY OF THE PROPERTY OF	□ 火炬源 火炬燃烧的总热释放率: 100000 Cal/s
出口烟气温度: 25 °C 固定温度▼	火炬燃烧辐射热损失率: 0.55
□ 出口烟气热容: 1005 J/Kg/K □ 出口烟气密度: 1.178833 Kg/	
□ 出口烟气分子里: 28.84 g/Mol	烟筒有效高度He计 ▼ 考虑动里抬升作用
1 个万朵桌评细季数	
污染源类型: 点源 ▼ 污染源名称: G1	
一般参数 排放参数	
*	
基准源强: 单位: kg/	Thr 🔻
序 污染物名称 排放强度	
1 TSP 2 PM10 0.005	
3 VOCs 0.022	
源 G2 参数:	
第 1 个污染源详细参数	
污染源类型: 点源 ▼ 污染源名称: G2	
一般参数 排放参数	
A SAN INFINESTA	
烟筒底座坐标(x, y, z): 30, -8, 0	□ 插值高程
一计算烟筒有效高度He ————————————————————————————————————	
烟筒几何高度: 15 m	烟筒有效高度He輸入方法: 自动计算
烟筒出口内径: 0.25 m	烟气参数代表的烟气状态:「实际状态 ▼
● 输入烟气流量: 2500 m^3/hr ▼	
C 输入烟气流速: 14.14711 m/s	火炬源
出口烟气温度: 25 ℃ 固定温度▼	・ 火炬燃烧的总热释放率: 100000 Cal/s 火炬燃烧辐射热损失率: 0.55
□ 出口烟气热容: 1005 J/Kg/K	八元
□ 出口烟气密度: 1.178833 Kg/ □ 出口烟气分子量: 28.84 g/Mol	
1 HHM VJ 1 ± 1 Z0.04 g/M01	96X Windo

面源二层生产车间参数

查看选项————————————————————————————————————	MINES PH.	果:未考虑地形 刷新结果(B)			坡度/占标率		1
至看内容: 一个源的简要数据▼							_
示方式: 1小时浓度 ▼	序号	方位角(度)	相对源高(m)	离源距离(m)	TSP	PM10	VOCs
染 源: G1 <u>▼</u>	-			- 10	0.0000	0.0070	0.004
染物:全部污染物 ▼	1	0	0	10 25	0.0000	0.0078	0.034
『点: 全部点 ▼	2	0	0	25 50	0.0000	0.0996 0.2619	0.438 1.152
,=	4	0	0	57	0.0000	0.3016	1. 102
	5	0	0	75	0.0000	0.2493	1.096
記示选项—————	6	ő	ő	100	0.0000	0.2981	1.31
式: 0.0000 🔻	7	ŏ	ő	125	0.0000	0.2674	1.17
	8	0	0	150	0.0000	0.2360	1.03
Ž: ug/m ² 3 <u>▼</u>	9	0	0	175	0.0000	0.2069	0.91
建议	10	0	0	200	0.0000	0.1819	0.80
和D10%须为同—污染物	11	0	0	225	0.0000	0.1609	0.708
	12	0	0	250	0.0000	0.1433	0.630
率Pmax:7.75%(一层车 s)	13	0	0	275	0.0000	0.1303	0.57
等级: 二级	14	0	0	300	0.0000	0.1195	0.52
N. C. & Co., and C. & C.	15	0	0	325	0.0000	0.1099	0.48
介项目可直接引用估算權。	16	0	0	350	0.0000	0.1014	0.44
集进行评价,大气环境影 医围边长取 5 km	17	0	0	375	0.0000	0.0939	0.41
	18	0	0	400	0.0000	0.0873	0.38
Pmax值建议的评价等级 围,应对照导则 5.3.3	19	0	0	425	0.0000	0.0814	0.35
惠,应对照导则 5.3.3	20	0	0	450	0.0000	0.0760	0.33
TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER	21	0	0	475	0.0000	0.0713	0.31
* 水水及(100至	-			475 500		100000000000000000000000000000000000000	0.31
	21 22	0	0	500	0.0000 0.0000	0. 0713 0. 0670	0.31 0.29
4 条款进行调整 5 选项	21 22	0 0 R:未考虑地形	0 0 高程。未考虑3	500 E筑下洗。AERSC	0.0000 0.0000 CREEN)运行了	0.0713 0.0670 '4次(耗时	0.31 0.29
i选项 内容:	21 22	0	0 0 高程。未考虑3	500 E筑下洗。AERSC	0.0000 0.0000	0.0713 0.0670 '4次(耗时	0.31 0.29
选项 容: 一个源的简要数据▼ 式: 1小时浓度占标率 ▼	21 22	0 0 R:未考虑地形	0 0 高程。未考虑3	500 E筑下洗。AERSC	0.0000 0.0000 CREEN)运行了	0.0713 0.0670 '4次(耗时	0.31 0.29
页 〒: 一个源的简要数据▼ 式: 「小时浓度占标率 ▼ 頁: 「G1 ▼	21 22 筛选结 序号	0 0 果:未考處地形 刷新结果(匙) 方位角(度)	日村が源高(m)	500 鎮下洗。AERSO 37 离源距离(m)	0.0000 0.0000 REEN运行了 文度/占标率	0.0713 0.0670 4次(耗时 曲线图···	0.31 0.29 0:0:19) VOCs
项 S: 一个源的简要数据 ▼ 式: 1小时浓度占标率 ▼ 原: G1 ▼ 勿: 全部污染物 ▼	21 22 筛选结 序号	0 0 果:未考虑地形 刷新结果(E) 方位角(度)	00 00 高程。未考虑到 相对源高(m)	500 鎮下洗。AERS(3 密源距离(m)	0.0000 0.0000 creen运行了 文度/占标率 TSP	0.0713 0.0670 4次(耗时 曲线图··· PM10	0.31: 0.29- 0:0:19) VOCs
①	21 22 筛选结! 序号 1 2	0 0 刷新结果(E) 方位角(度) 0	0 0 高程。未考虑3 相对源高(m) 0	500 筑下洗。AERSO 沼 密源距离(m) 10 25	0.0000 0.0000 CREENJA行了 文度/占标率 TSP 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02	0.31 0.29 0:0:19) VOCs
①	21 22 筛选结 序号 1 2 3	0 0 刷新结果(E) 方位角(度) 0 0	0 0 高程。未考虑随 相对源高(m) 0 0	500 鎮下洗。AERS(済 密源距离(m) 10 25 50	0.0000 0.0000 CREEN;运行了 文度/占标率 TSP 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06	0.31 0.29 0:0:19) VOCs 0.
一个源的简要数据▼ 1小时浓度占标率 ▼ G1 全部污染物 ▼ 全部点 ▼	21 22 筛选结! 序号 1 2	0 0 刷新结果(E) 方位角(度) 0	0 0 高程。未考虑3 相对源高(m) 0	500 筑下洗。AERSO 沼 密源距离(m) 10 25	0.0000 0.0000 CREENJA行了 文度/占标率 TSP 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02	0.31: 0.29: 0:0:19) VOCs
一个源的简要数据 ▼	21 22 	0 0 刷新结果(E) 方位角(度) 0 0 0	1000000000000000000000000000000000000	500 鎮下洗。AERS(済 密源距离(m) 10 25 50	0.0000 0.0000 CREEN;运行了 文度/占标率 TSP 0.00 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07	0.31: 0.29: 0:0:19) VOCs 0.1 0.0
一个源的简要数据▼ 1小时浓度占标率 ▼ 1小时浓度占标率 ▼ 1 ▼ 1	21 22 筛选结: 序号 1 2 3 4 5	0 0 刷新结果(E) 方位角(度) 0 0 0	1000000000000000000000000000000000000	500 鎮下洗。AERSO 河 密源距离(m) 10 25 50 57	0.0000 0.0000 CREEN;运行了 文度/占标率 TSP 0.00 0.00 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06	0.31: 0.29 (0:0:19) VOCs 0.1 0.0 0.0
一个源的简要数据▼ I小时浓度占标率 ▼ I和 ▼ 全部污染物 ▼ 全部点 ▼	字号 第3 第3 第4 5 6	0 0 刷新结果(E) 方位角(度) 0 0 0	1000000000000000000000000000000000000	500 鎮下洗。AERS(河 密源距离(m) 10 25 50 57 75 100	0.0000 0.0000 CREEN运行了 文度/占标率 TSP 0.00 0.00 0.00 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07	0.31: 0.29 (0:0:19) VOCs 0.1 0.0 0.0 0.0
个源的简要数据▼ N时浓度占标率 ▼ 部污染物 ▼ 部点 ▼	字号 第选结: 序号 1 2 3 4 5 6	0 0 刷新结果(E) 方位角(度) 0 0 0 0	日 日 日 日 日 の の の の の の の の の の の の の	500 鎮下洗。AERSC 河 密源距离(m) 10 25 50 57 75 100 125	0.0000 0.0000 CREEN;运行了 文度/占标率 TSP 0.00 0.00 0.00 0.00 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06	0.31: 0.29 (0:0:19) VOCs 0.1 0.0 0.0 0.0
下源的简要数据▼ 时浓度占标率 ▼ ▼ W污染物 ▼ ID. 008+00 ▼	字号 第选结: 序号 1 2 3 4 5 6 7	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0	1000000000000000000000000000000000000	500 鎮下洗。AERSC 河 密源距离(m) 10 25 50 57 75 100 125 150	0.0000 0.0000 CREEN;运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.07	0.31: 0.29: 0:0:19) VOCs 0.1 0.0 0.1 0.1
- 个源的简要数据▼	字号 第选结: 序号 1 2 3 4 5 6 7 8 9	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (筑下洗。AERSC 河 密源距离(m) 10 25 50 57 75 100 125 150 175	0.0000 0.0000 CREEN;运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05	0.31: 0.29: 0:0:19) VOCs 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1
一个源的简要数据▼ 小时浓度占标率▼ ▼ ※部污染物 ▼ ※部点 ▼	字号 第选结: 序号 1 2 3 4 5 6 7 8 9	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (筑下洗。AERSC 河 密源距离(m) 10 25 50 57 75 100 125 150 175 200	0.0000 0.0000 CREEN运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04	0.31: 0.29 0:0:19) V0Cs 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
- 个源的简要数据▼	字号 第选结: 序号 1 2 3 4 5 6 7 8 9 10	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (第下洗。AERSO 第距离(m) 10 25 50 57 75 100 125 150 175 200 225	0.0000 0.0000 CREEN;运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04	0.31: 0.29 0:0:19) VOCs 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.
一个源的简要数据▼ 1小时浓度占标率 ▼ G1 ▼ 全部污染物 ▼ 全部污染物 ▼ 注项 ▼ : 0.00E+00 ▼ : % ▼ 建议 □ □ □ 10%页为同一污染物 ▼	字号 1 22 第选结: 序号 1 2 3 4 5 6 7 8 9 10 11 12	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (筑下洗。AERSC 済 密源距离(m) 10 25 50 57 75 100 125 150 175 200 225 250	0.0000 0.0000 CREEN;运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.04	0.31: 0.29 0:0:19) VOCs 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
□ — 个源的简要数据 ▼ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	字号 1 22 第选结: 第号 1 2 3 4 5 6 7 8 9 10 11 12 13	0 0 0 副新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (第下洗。AERSO 済 密源距离(m) 10 25 50 57 75 100 125 150 175 200 225 250 275	0.0000 0.0000 0.0000 CREEN;运行了 文度/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.03 0.03	0.31: 0.29 0:0:19) VOCs 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0
而 : 一个源的简要数据▼ : 1小时浓度占标率 ▼ i: G1 ▼ g1: 全部污染物 ▼ : 全部点 ▼ 式: 0.00E+00 ▼ 成: (%) ▼ Wation Town Town Town Town Town Town Town To	字号 1 22 第选结: 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0	日 の の の の の の の の の の の の の の の の の の の	500 (第下洗。AERSO 河 密源距离(m) 10 25 50 57 75 100 125 150 175 200 225 250 275 300	0.0000 0.0000 0.0000 0.000 0.00 0.00 0	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.03 0.03	0.31: 0.29 0:0:19) VOCs 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0
而 : 一个源的简要数据▼ : 1小时浓度占标率 ▼ i: G1 ▼ 回: 全部污染物 ▼ 全部点 ▼ 元选项 式: 0.00E+00 ▼ 成建议 ▼ x和D10%页为同一污染物 率Pmax: 7.75%(一层车 Cs)	序号 1 22 第选结: 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	の の の の の の の の の の の の の の	相对源高(m) 0 0 高程。未考虑到 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 (第下洗。AERSO 河 高源距离(m) 10 25 50 57 75 100 125 150 175 200 225 250 275 300 325	0.0000 0.0000 0.0000 0.000 0.00 0.00 0	0.0713 0.0670 4 次(耗时 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03	0.31 0.29 0:0:19) VOCs 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
页 — 个源的简要数据▼	序号 1 22 第选结: 序号 1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14 15 16	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 高程。未考虑到 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 (第下洗。AERSO 河 高源距离(m) 10 25 50 57 75 100 125 150 175 200 225 250 275 300 325 350	0.0000 0.0000 0.0000 creeniaff j 皮/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4次(耗的 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03	0.31: 0.29 0:0:19) VOCs 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0
□ - 个源的简要数据 ▼ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	序号 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	日本 (m) の の の の の の の の の の の の の の の の の の の	500 500 37 37 37 37 37 37 37	0.0000 0.0000 0.0000 creeniaff j 皮/占标率 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0713 0.0670 4次(耗的 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03	0.313 0.294 0:0:19)
一个源的简要数据▼ 「小时浓度占标率▼ 「好」 全部污染物 全部污染物 全部点 で、	序号 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0 0 0 刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 500 37 37 37 37 37 37 37	0.0000 0.0000 0.0000 0.000 0.00 0.00 0	0.0713 0.0670 4次(耗的 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.07 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.02	0.31: 0.29: 0:0:19) VOCs 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.
T.	序号 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 500 37 37 37 37 37 37 37	0.0000 0.0000 0.0000 0.000 0.00 0.00 0	0.0713 0.0670 4次(耗的 曲线图··· PM10 0.00 0.02 0.06 0.07 0.06 0.07 0.06 0.07 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02	0.31: 0.29: 0:0:19) VOCs 0.1 0.0: 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

- 查看选项	师选辑	果:未考虑地形 刷新结果(B)			ken运行」 k度/占标率		lo:0:19) •
查看内容: 一个源的简要数据▼ 显示方式: 1小时浓度 ▼							
污染源: □层车间 ▼	序号	方位角(度)	相对源高(m)	离源距离(m)	TSP	PM10	VOCs
See St. III A debe State	1	0	0	10	3, 6203	0.0000	5, 7925
	2		0	25	4.2214	0.0000	6, 7542
计算点: 全部点 ▼	3	0	0	39	4.6521	0.0000	7, 4434
	4	0	0	50	3, 9650	0.0000	6.3440
土拉中二进 环	5	0	. 0	75	2.3342	0.0000	3, 734
表格显示选项————————————————————————————————————	6		0	100	1.5521	0.0000	2.4834
数据格式: 0.0000 ▼	7		0	125	1.1315	0.0000	1.810
数据单位: ug/m ² 3 ▼	8		0	150	0.8762	0.0000	1, 401
AAB4 1 1 2 3 3 3	9		0	175	0.7059	0.0000	1.129
评价等级建议———————	10	0	0	200	0.5860	0.0000	0.9376
□ Pmax和D10%须为同一污染物	11	0	0	225	0.4976	0.0000	0. 796
大占标率Pmax: 7.75%(一层车	12	0	0	250	0.4301	0.0000	0.688
的 vocs)	13		0	275	0.3770	0.0000	0.6032
议评价等级: 二级	14		0	300	0.3344	0.0000	0.5350
- 织证价项中可支接引用开发措	15	0	0	325	0.2995	0.0000	0.4792
- 级评价项目则且拨列用的异像	16	0	0	350	0.2704	0.0000	0.432
二级评价项目可直接引用估算模型预测结果进行评价,大气环境影响许见访围边长取 5 km	17	0	0	375	0.2459	0.0000	0.3934
	18	0	0	400	0.2250	0.0000	0.3600
人上根据Pmax值建议的评价等级 I评价范围,应对照导则 5.3.3	19	5	0	425	0.2069	0.0000	0.331
1147)(氾闽,应刘熙等则 5.3.3 15.4 条款进行调整	20	2.0	0	450	0.1913	0,0000	0.306
10. 4 NWATTH HE	21	5		475	0.1776	0.0000	0. 284
查看选项	筛选结		高程。未考虑建				
查看内容: 一个源的简要数据▼	筛选结:	果:未考虑地形 刷新结果(B)			107 077	4 次(耗时	
至看内容: 一个源的简要数据▼ 記示方式: 1小时浓度占标率 ▼	筛选结:				REEN运行了	4 次(耗时	
看内容: 一个源的简要数排▼ 示方式: 1小时浓度占标率 ▼ ;染 源: 二层车间 ▼		刷新结果(<u>R</u>)		R	REEN运行了 R度/占标率	4 次(耗时 曲线图…	0:0:19)。
看内容:	序号	刷新结果(匙) 方位角(度)	相对源高(m)		TSP	4 次(耗时 曲线图… PM10	0:0:19) • VOCs 0.48
看内容:	序号	刷新结果(匙) 方位角(度)	相对源高(m)	高源距离(m) 10	REEN运行了 度/占标率 TSP 0.40	4 次(耗时 曲线图··· PM10 0.00	VOCs 0. 48
看内容:	序号 1 2 3 4	刷新结果(<u>R</u>) 方位角(度) 0 0 0	相对源高(m) 0 0	高源距离(m) 10 25 39 50	TSP 0.40 0.47 0.52 0.44	4 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00	VOCs 0.48 0.56 0.56
看內容: 一个源的简要数排▼ 示方式: 1小时浓度占标率 ▼ : 染 源: 二层车间 ▼ : 染 物: 全部污染物 ▼ · 算 点: 全部点 ▼	序号 1 2 3 4 5	刷新结果(<u>R</u>) 方位角(度) 0 0 0 0	相对源高(m) 0 0 0	高源距离(m) 10 25 39 50 75	TSP 0.40 0.52 0.52	4 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00	VOCs 0.48 0.56 0.53 0.31
看内容:	序号 1 2 3 4 5	刷新结果(匙) 方位角(度) 0 0 0 0 0	相对源高(m) 0 0 0 0	高源距离(m) 10 25 39 50 75	TSP 0.40 0.47 0.52 0.44 0.26 0.17	4 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0.48 0.56 0.53 0.21
看内容:	序号 1 2 3 4 5 6	刷新结果(匙) 方位角(度) 0 0 0 0 0	相对源高(m) 0 0 0 0	高源距离(m) 10 25 39 50 75	TSP 0.40 0.47 0.52 0.44 0.26 0.17 0.13	4 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0.48 0.56 0.53 0.31 0.21
看内容:	序号 1 2 3 4 5 6	刷新结果(匙) 方位角(度) 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150	TSP 0.40 0.47 0.52 0.44 0.26 0.17 0.13 0.10	4 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0.48 0.56 0.53 0.21 0.18
 看内容: 一个源的简要数据▼ 示方式: 1小时浓度占标率▼ 宗染源: 二层车间▼ 宗染物: 全部污染物▼ 算点: 全部点▼ 表格显示选项 数据格式: 0.0000▼ 数据单位: % 	序号 1 2 3 4 5 6 7 8 9	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0.48 0.56 0.53 0.31 0.21 0.12 0.09
看內容:	序号 1 2 3 4 5 6 7 8 9	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175 200	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0.48 0.56 0.53 0.31 0.21 0.12 0.08
看內容:	序号 1 2 3 4 5 6 7 8 9 10 11	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175 200 225	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0.48 0.56 0.53 0.31 0.21 0.12 0.09 0.08
看内容:	序号 1 2 3 4 5 6 7 8 9 10 11 12	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175 200 225	TSP 0. 40 0. 47 0. 52 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0.48 0.56 0.53 0.31 0.21 0.12 0.09 0.08 0.07
看内容:	序号 1 2 3 4 5 6 7 8 9 10 11 12 13	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175 200 225 250 275	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0. 48 0. 56 0. 53 0. 11 0. 12 0. 08 0. 08 0. 08 0. 08 0. 08 0. 08
看内容:	序号 1 2 3 4 5 6 7 8 9 10 11 12 13	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 76 100 125 150 175 200 225 250 275 300	TSP 0. 40 0. 47 0. 52 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 04 0. 04 0. 04	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0. 48 0. 56 0. 53 0. 11 0. 12 0. 08 0. 08 0. 08 0. 08 0. 08 0. 08 0. 08 0. 08
看內容:	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 76 100 125 150 175 200 225 250 275 300 325	TSP 0. 40 0. 47 0. 52 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 04 0. 03	# 次(耗的 曲线图··· PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	VOCs 0.48 0.56 0.53 0.31 0.21 0.15 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04
至	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 76 100 125 150 175 200 225 250 275 300 325 350	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 04 0. 03 0. 03 0. 03	# 次(耗的 曲线图··· PM10 0.00 0.	VOCs 0.48 0.56 0.53 0.31 0.21 0.15 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0
至	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	高源距离(m) 10 25 39 50 75 100 125 150 175 200 225 250 275 300 325 350 375	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 04 0. 03 0. 03 0. 03 0. 03 0. 03	# 次(耗的 曲线图··· 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0. 48 0. 56 0. 62 0. 13 0. 21 0. 12 0. 03 0. 06
至者内容: 一个源的简要数据▼ 显示方式: 「小时浓度占标率▼ 5 染 源: 二层车间 ▼ 5 染 物: 全部污染物 ▼ 特 点: 全部点 ▼ 表格显示选项 ▼ 数据格式: 0.0000 ▼ 数据单位: % ▼ 評价等级建议 ▼ Pmax和D10%须为同一污染物 大占标率Pmax:7.75% (一层车	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	刷新结果(度) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 密源距离(m) 10 25 39 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 03 0. 03 0. 03 0. 02	# 次(耗的 曲线图··· 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0. 48 0. 56 0. 62 0. 12 0. 12 0. 12 0. 03 0. 06
至	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	刷新结果(E) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 密源距离(m) 10 25 39 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 03 0. 03 0. 03 0. 02 0. 02 0. 02	4次(耗的 曲线图··· 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0. 48 0. 56 0. 62 0. 53 0. 31 0. 12 0. 09 0. 08 0. 07 0. 06 0. 04 0. 04 0. 04 0. 03 0. 03 0. 03 0. 03
是有内容: 一个源的简要数据▼ 是示方式: 1小时浓度占标率▼ 是杂源: 二层车间 ▼ 是杂物: 全部污染物 ▼ 等。染物: 全部污染物 ▼ 等。 次数据格式: 0.0000 ▼ 数据单位: % ▼ 一 Pmax和D10%须为同一污染物 大占标率Pmax:7.75%(一层车部的 V0Cs) 型价等级建设 ▼ 型价等级: 二级 ▼ 级评价等级: 二级 ② 级评价等级: 二级 ② 级评价项目可直接引用估算模别 等级 ② ② ② 证评价第级 三级 ② 证证价等级 三级 ② ② 证证价等级 三级 ② 证证价等级 三级 平价范围 应数 图字则 5.3.3	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	刷新结果(度) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	378 100 25 39 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 03 0. 03 0. 03 0. 02 0. 02 0. 02 0. 02 0. 02 0. 02	# 次(耗的 曲线图··· 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0. 48 0. 56 0. 62 0. 53 0. 31 0. 21 0. 18 0. 06 0.
 一	序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	刷新结果(度) 方位角(度) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	相对源高(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 密源距离(m) 10 25 39 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425	TSP 0. 40 0. 47 0. 52 0. 44 0. 26 0. 17 0. 13 0. 10 0. 08 0. 07 0. 06 0. 05 0. 04 0. 03 0. 03 0. 03 0. 02 0. 02 0. 02	4次(耗的 曲线图··· 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	VOCs 0. 44 0. 56 0. 53 0. 22 0. 19 0. 00

建设项目环评审批基础信息表

	200	1 1			,	工人人口一	N + 1MT IM						
		文(盖章)					填表人(签字):	3		建设单位联	系人(签字):	_	
	七	项目名称	江门市江海区龙城辰枢装饰设计有限公司年产展柜1000登建设项目						description on the second				
	1	项目代码' 建设地点 红门市江海区北克路1号3幅					建设内容	、	年产版框1000套				
建设 型項目	- /	0		art the art									
		项目建设超加(用)			1.0		计划开	工时间	2020年11月				
	D	不境影响评价行业类别		36木	质家具制造		預计投	产时间	2020年12月				
		建设性质		Mi	赴 (迁 建)		国民经济行	2110 木质家具制造					
	现	有工程排污许可证编号 (改、扩建项目)					项目中诸类别			新中项目			
		规划环评开展情况			不需开展		规划环评文件名						
		规划环评审查机关					规划环评审	查念见文号					
		建设地点中心坐标 ³ (非线性工程)	经度	113.166752	纬度	22.568779	环境影响评	价文件类别			环境影响报告表		
	建设	Q地点坐标(线性工程)	起点经度		起点纬度		终点经度		终点纬度		工程长度 (千米)		
		总投资 (万元)			100.00		环保投资	环保投资 (万元) 3		00 环保投资比例 34.00%		34.00%	
	A Sec	单位名称	江门市江海区龙城展柜装饰设计有限 公司		法人代表			单位名称	江门市佰博环	保有限公司	证书编号	0006704	
建设单位		统一社会信用代码 (组织机构代码)		4X7XGW6M	技术负责人	_	评价 单位	环评文件项目负责人	KIX	ι,	联系电话	13802607348	
	E	通讯地址	江门市江海区北苑路1		联系电话		通讯地址		江门市蓬江区篁庄大道西10号6幢301空3-320,321				
				现有工程 本工程 (己建+在建) (拟建或调整变更)		总体工程 (己建+在建+拟建或调整变更)							
	污染物		①实际排放量 ②许可排放量 (吨/年) (吨/年)			④"以新作老"削減量 (吨/年)	⑤区域平衡替代本工程 削减量*(吨/年)		⑦排放增减量 (吨/年) 5		排放方式		
污		废水量(万吨/年)			0.000	_		0.000	0.000	〇不排放			
		COD			0.000			0.000	0.000	● 间接排放:	回 市政管网		
染	废水	気気			0.000			0.000	0.000		□ 集中式工业污水处理厂	•)	
物排		400						0.000	. 0.000	〇直接排放: 受納水体			
放		总领						0.000	0.000				
最	Name of	废气量 (万标立方米/年)			10710.000			11190.000	10710.000		1		
	废气	二氧化硫			0.000			0.000	0.000		1		
		氮氧化物			0.000			0.000	0.000		1		
		颗粒物			0.040			0.040	0.040				
	挥发性有机物				0.190			0.190	0.190		1		
		生态保护目标	响及主要措施		名称	级别	主要保护对象 (目标)	工程影响情况	是否占用	占用面积 (公顷)		三态防护措施	
	保护区	自然保护区							否		□ 遊让□ 减级 □ 补机		
与风景名		饮用水水源保护区					1		否		□ 遊让□ 减级 □ 补付		
情	ኢ	饮用水水源保护区	(地下)				1		否	□ 避让□ 减级 □ 补偿□ 重建 (
		风景名胜区	Philippe Market Service Process				E r	1	否		□ 遊让□ 减级 □ 补付	5 T 107th / 42th \	

注: 1、同级经济部门市批核发的唯一项目代码 2、分类依据: 国民经济行业分类(GB/T 4754-2017)

^{2.} 对多点项目保护作业体工程的中心坐标 4. 指该项目所在区域通过"区域平衡"专为本工程总代例域的量 5. ⑦=⑤=⑥=⑥:⑥=②=⑥+⑥:⑤◎=0 明.⑥=①=④+⑥