江门市江海区新启成五金制品有限公司年 产铝铸件 70 万件建设项目环境影响报告表 (送审稿)

建设单位: 江门带江海区新启成五金制品有限公司

评价单位: 江门市泰邦环保有限公司

编制时间:二〇二〇年十月

声明

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政 许可法》、《建设项目环境影响评价政府信息公开指南(试行)》(环办 【2013】103号)、《环境影响评价公众参与办法》(生态环境部令第 4 号)、特对环境影响评价文件(公开版)作出如下声明:

我单位提供的<u>江门市江海区新启成五金制品有限公司年产铝铸</u> 件 70 万件建设项目(公开版)(项目环评文件名称)不含国家秘密、 商业秘密和个人隐私,同意按照相关规定予以公开。

建设单位 (盖章) 评价单位 (盖章) 法定代表人 (签名 9027313 法定代表人 (签名 9027313 基本 月 日 本声明书原件交环保审批部门,声明单位可保留复印件

承诺书

根据《中华人民共和国「境影响评价法》、《中华人民共和国行政许可法》、《建设项目环境影响评价资质管理办法》、《环境影响评价公众参与办法》(生态环境部令第 4 号),特对报批<u>江门市江海区新启成五金制品有限公司年产铝铸件 70 万件建设项目</u>环境影响评价文件作出如下承诺:

- 1、我们承诺对提交的项目环境影响评价文件及相关材料(包括但不限于建设项目内容、建设规模、环境质量现状调查、相关检测数据、公众参与调查结果)真实性负责;如违反上述事项,在环境影响评价工作中不负责任或弄虚作假等致使环境影响评价文件失实,我们将承担由此引起的一切责任。
- 2、我们承诺提交的环境影响评价文件报批稿已按照技术评估的要求 修改完善,本报批稿的内容与经技术评估同意报批的版本内容完全一致, 我们将承担由此引起的一切责任。
- 3、在项目施工期和营运期,严格按照环境影响评价文件及批复要求 落实各项污染防治和风险事故防范措施,如因措施不当引起的环境影响 或环境事故责任由建设单位承担。
- 4、我们承诺廉洁自律,严格按照法定条件和程序办理项目申请手续, 绝不以任何不正当手段干扰项目评估及审批管理人员,以保证项目审批 公正性。

建设单位(盖章) 法定代表人(签名 评价单位(盖章) 法定代表人(签名)) 年 月 日

注:本承诺书原件交环保审批部门,承诺单位可保留复印件。

建设项目环境影响报告书(表)编制情况承诺书

本单位_江门市泰邦环保有限公司___(统一社会信用代码91440700MA4UQ17N90_)郑重承诺:本单位符合《建设项目环境影响报告书(表)编制监督管理办法》第九条第一款规定,无该条第三款所列情形,__不属于__(属于/不属于) 该条第二款所列单位;本次在环境影响评价信用平台提交的由本单位主持编制的江门市江海区新启成五金制品有限公司车产铝铸件70万件建设项目环境影响报告书(表)基本情况信息真实准确、完整有效,不涉及国家秘密;该项目环境影响报告书(表)的编制主持人为__黄芳芳___(环境影响评价工程师职业资格证书管理号2014035440350000003512440635,信用编号_BH002324)、主要编制人员包括__黄芳芳__(信用编号_BH002324)、主要编制人员包括__黄芳芳__(信用编号_BH002324)、上述人员均为本单位全职人员;本单位和上述编制人员未被列入《建设项目环境影响报告书(表)编制监督管理办法》规定的限期整改名单、环境影响评价失信"黑名单"。

编制单位和编制人员情况表

项目编号		ii3r77		
建设项目名称		红门市江海区新启成五金	注制品有限公司年产铝	6件70万件建设项目
建设项目类别		21_065有色金属铸造		
环境影响评价文	(件类型	报告表		
一、建设单位性	青况	-	(M)	植画
単位名称 (盖章	č)	江门市江海区新启成五金	制品有限公司	A VEIL
统一社会信用代	564	91440704692421681E	山山	1-1
法定代表人(签	章)	曾刚毅	1	74/1
主要负责人(签	[字]	曾刚毅		
直接负责的主管	F人员 (签字)	潘杰康		
二、编制单位作	青况	(四大		
単位名称 (盖章	()	江门市和邦廷保有限公司		
统一社会信用代	(码	91440700MA4UQ17N96		
三、编制人员	青况	Physics	/	
1. 编制主持人				
姓名	职业	资格证书管理号	信用编号	签字
黄芳芳	201403544	0350000003512440635	BH002324	333
2. 主要编制人	员			
姓名 主		要编写内容	信用编号	签字
黄芳芳 况、环境质量 建设项目工程		:地自然环境社会环境简 状况、评价适用标准、 !分析、项目主要污染物 !放情况、环境影响分析	BH002324	3.73.73
《建设项目环》 明、建设项目 采取的防治指		·境影响报告表》编制说 基本情况、建设项目拟 能及预期治理效果、结 论与建议	BH009561	3/11/8/2/

本证书由中华人民共和国人力资源和社会保障部、环境保护部批准颁发。它表明持证人通过国家统一组织的考试,取得环境影响评价工程师的职业资格。

This is to certify that the bearer of the Certificate has passed national examination organized by the Chinese government departments and has obtained qualifications for Environmental Impact Assessment Engineer.

Ministry of Human Resources and Social Security

The People's Republic of China

0

持证人签名: Signature of the Bearer

黄慈

管理号: **20140354403500000**003512440635 File No.

姓名: 黄芳芳 Full Name 性别: 女 Sex 出生年月: 1984年08月 Date of Birth 专业类别: Professional Type 批准日期: 2014年05月25日 Approval Date 签发单位盖章 Issued by

2014年 09月10

人员参保历史查询

单位参	保号 7	711900386740		单位名称	acro as	S HERE	有限2司		
个人参	保号 4	14078219840807	032X	个人姓名	1300	. 1	乘		
性券	d :	女		身份证	4107821	(1 9840807	POLICE IN		
	基本	养老 保险缴费	记录		ELTIP	会保険	H 早 基金管理局	i	
版费记录类 型	局名	单位参保号	单位名称	开始年月	截止年月	月数	单位微纳	个人般的	缴纳工员
实际缴费	蓬江区	39-083	江门市环境科学研究所	200808	200906	11	1812.03	852.72	969.00
实际缴费	蓬江区	39-083	江门市环境科学研究所	200907	201008	14	2577.54	1212.96	1083.00
实际缴费	蓬江区	39-083	江门市环境科学研究所	201009	201101	5	948.80	474.40	1186.00
实际缴费	蓬江区	39-083	江门市环境科学研究所	201102	201106	5	1042.40	521.20	1303.00
实际维费	蓬江区	39-083	江门市环境科学研究所	201107	201302	20	5145.00	2744.00	1715.00
实际激费	市区直属	39-083	江门市环境科学研究所	201303	201406	16	4116.00	2195.20	1715.00
实际缴费	市区直属	39-083	江门市环境科学研究所	201407	201412	6	1668.42	1026.72	2139.00
实际撤费	市区直属	39-083	江门市环境科学研究所	201501	201609	21	6573.84	4045.44	2408.00
实际缴费	市区直属	39-083	江门市环境科学研究所	201610	201706	9	3400.02	2092.32	2906.00
实际激费	市区直属	39-083	江门市环境科学研究所	201707	201712	6	2091.96	1287.36	2682.00
实际缴费	市区直属	39-083	江门市环境科学研究所	201801	201806	6	2266.68	1394.88	2906.00
实际激费	市区直属	39-083	江门市环境科学研究所	201807	201906	12	4836.00	2976.00	3100.00
实际缴费	市区直属	39-083	江门市环境科学研究所	201907	201907	1	438.88	270.08	3376.00
实际邀费	蓬江区	711900386740	江门市泰邦环保有限公司	201908	202001	6	2633.28	1620.48	3376.00
实际缴费	蓬江区	711900386740	江门市泰邦环保有限公司	202002	202006	5	0.00	1350.40	3376.00
					습하	143	39550.85	24064.16	

目 录

-,	《建设项目]环境影响报告表》编制说明1
=,	建设项目基	基本情况2
三、	建设项目的	f在地自然环境社会环境简况6
四、	环境质量物	状况8
五、	评价适用标	示准1 5
六、	建设项目】	
七、	项目主要污	5染物产生及预计排放情况
八、	环境影响分	}析28
		以采取的防治措施及预期治理效果49
+.	结论与建议	ζ51
. `		
	附图:	
	附图 1	项目地理位置图;
	附图 2	项目四至图;
	附图 3	项目敏感点分布图;
	附图 4	项目厂区平面布置图;
	附图 5	项目所在地水环境功能区划图;
	附图 6	项目所在地环境空气质量功能区划图;
	附图 7	项目所在地地下水功能区划图;
	附图 8	项目所在地声功能区划图;
	附图 9	江门市城市总体规划图;
	附图 10	江海污水处理厂纳污范围图;
	附件:	
	附件 1	营业执照;
	附件 2	法人身份证;
	附件3	国土证;
	附件4	环境质量现状引用资料;
	附件 5	现状监测资料;
	附件 6	脱模剂成分说明;
	附件 7	租赁合同;
	附表:	

附表 1 建设项目地表水环境影响评价自查表

附表 2 建设项目大气环境影响评价自查表

附表 3 建设项目环境风险评价自查表

一、《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1. 项目名称——指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。
 - 2. 建设地点——指项目所在地详细地址,公路、铁路应填写起止终点。
 - 3. 行业类别——按国标填写。
 - 4. 总投资——指项目投资总额。
- 5. 主要环境保护目标——指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。
- 6.结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
 - 7.预审意见——由行业主管部门填写答复意见,无主管部门项目,不填。
 - 8. 审批意见——由负责审批该项目的环境保护行政主管部门批复。

二、建设项目基本情况

项目名称	江门市江海区新启成五金制品有限公司年产铝铸件70万件建设项目				
建设单位		江门市江海区	新启成五金制	训品有限公司	
法人代表			联系人		
通讯地址	江	江门市江海区龙溪路 295 号 4 幢首层自编 01			
联系电话		传真		邮政编码	529000
建设地点		江门市江海区龙溪路 295 号 4 幢			
立项审批部门			批准文号		
建设性质	新	建	行业类别 及代码	C3392 有色金	属铸造
占地面积 (平方米)	120	00	绿化面积 (平方米)		
总投资 (万元)	100	其中: 环保护 资(万元)	20	环保投资占总投 资的比例	20%
评价经费 (万元)	/	预期投产日 期		2020年12月	•

工程内容及规模:

一、项目由来

江门市江海区新启成五金制品有限公司位于江门市江海区龙溪路 295 号 4 幢首层自编 01(坐标位置: N 22.554455°, E 113.154108°)。该项目租赁厂房, 占地面积 1200m², 建筑面积 1020 m², 生产规模为年产铝铸件 70 万件。

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》、《建设项目环境影响评价分类管理名录》(生态环境保护部令第 1 号,2018.4.28 实施)和《建设项目环境保护管理条例》的有关要求,项目属于管理名录内"二十一、65 有色金属铸造一其他"类别,本项目应做环境影响报告表。2020 年 9 月,建设单位委托我单位承担此项目的环境影响评价工作。接受委托后,我单位立即组织评价人员收集了相关资料,在此基础上,根据环评技术导则的要求,编制了《江门市江海区新启成五金制品有限公司年产铝铸件 70 万件建设项目环境影响报告表》,报环境主管部门审查。

二、与本项目有关的技术指标如下:

1、项目工程内容

该项目租赁厂房,该厂房共 5 层,占地面积 $1200 m^2$,项目租用厂房首层,使用面积 $1020 m^2$,工程组成见表 2-1。

表 2-1 项目工程组成一览表

类别	工程名称	建设规模		
主体 工程	生产车间	占地面积 1200 m², 1F,设置压铸区、机加区、抛光区和包装区		
	废气防治措施	抛光粉尘通过水喷淋塔处理后通过 25m 排气筒排放;压铸废气通过水喷淋+UV 光解+活性炭吸附装置处理后通过 25m 排气筒排放		
77° /17	废水防治措施	生活污水经三级化粪池预处理后达标排放		
环保 工和	噪声防治措施	减震、隔声、降噪设施		
工程 固废防治措施		粉尘渣、金属碎屑和废铝渣收集后交废品商回收处理; 废包装材料、 生活垃圾交环卫部门回收处理; 废活性炭、废 UV 灯管交由有资质 单位处理;		
ΛП	供电系统	由市政供电系统供给		
公用	给水系统	由市政自来水管供给		
工程	排水工程	雨污分流		

2、项目产品

项目产品明细详见表 2-2。

表 2-2 项目产品明细表

序号	产品名称	年产量
1	铝铸件	70 万件

3、原辅材料及年消耗量

根据建设单位提供的资料,项目主要原辅材料及年消耗量见表 2-3。

表 2-3 原辅材料消耗情况表

序号	原料名称	年用量	最大储存量
1	铝锭	70 吨	7 吨
2	脱模剂	2 吨	0.3 吨

4、主要生产设备

根据建设单位提供的设备清单等资料,项目主要生产设备见表 2-4。

表 2-4 项目主要生产设备

序号	主要设备	数量(台)
1	联升铝合金压铸机 288 吨	1
2	联升铝合金压铸机 218 吨	1
3	联升铝合金压铸机 400 吨	1
4	空压机	1
5	抛光机	2
6	震光机	1
7	烘干机	1
8	钻孔机	20
9	切割机	3
10	冷却塔	1

5、工作制度及劳动定员

本项目拟设置员工数 10 人, 年工作天数 300 天, 每日工作 8 小时, 不设食宿。

6、水电消耗

项目水、电消耗情况见表 2-5。

表 2-5 水、电消耗情况

名称	数量	来源	用途
用水	725t/a	市政自来水	生活用水、冷却用水、喷淋用水、震光用水
用电	50 万度/a	市电网供应	/

7、公用工程

(1) 给排水

A、项目给水: 本项目用水为市政自来水管供给的新鲜用水。

B、项目排水:项目排放的废水主要为生活污水,经隔油隔渣池、三级化粪池处理 后达标排放。

(2) 供电

项目用电由市政供电系统供给,用电量为50万度/年。主要用于生产设备、通排

风系统和车间照明。

三、政策及规划相符性

(1) 产业政策符合性分析

项目所使用的原材料、生产设备及生产工艺均不属于《市场准入负面清单(2019年版)》、《产业结构调整指导目录(2019年本)》、《关于发布珠江三角洲地区产业结构调整优化和产业导向目录的通知》(粤经函[2011]891号)中禁止准入类和限制准入类,不属于《广东省进一步加强淘汰落后产能工作实施方案》中重点淘汰类和重点整治类。因此,本项目符合产业政策。

(2) 选址可行性分析

根据项目土地证(附件 3),粤(2017)江门市不动产权第 1000179 号,用途为工业用地;并根据《江门市城市总体规划图(2011-2020)》,项目位置属于二类工业用地,符合江门市城市总体规划要求。因此项目建设符合当地用地规划。

项目生活污水纳污水体为麻园河,执行《地表水环境质量标准》(GB3838-2002) V 类标准;大气环境属于《环境空气质量标准》(GB3095-2012)及其修改单中的二类环境空气质量功能区;声环境属《声环境质量标准》(GB3096-2008)3 类区。项目所在位置不属于禁排区。

与该项目有关的原有污染情况及主要环境问题:

一、原项目污染情况

项目为新建项目,不存在原有项目污染。

二、项目周边污染情况。

项目位于江门市江海区龙溪路 295 号 4 幢首层自编 01,项目北、南、西面均为工业厂企,东面为空地。

从现场勘查可知,本项目周边主要环境问题为周边工厂产生的废水、废气、固废、噪声和周围工地施工产生的噪声、固废和扬尘等,以及项目周边道路产生的交通尾气及噪声。

但从环境现状监测结果可见,项目所在地大气环境质量、水环境质量、声环境质量现状均良好,说明所在区域环境质量较好。

三、建设项目所在地自然环境社会环境简况

自然环境(地形、地貌、地质、气候、气象、水文、植被、生物多样性等):

1、地理位置

江门市江海区位于广东省中南部,西江下游、珠江三角洲西侧,在北纬 22°29′39″至 22°36′25″,东经 113°05′50″至 113°11′09″之间,东隔西江与中山市相望,北靠蓬江区,西面和南面与新会区相连。

2、地貌、地质特征

江门市区境内地势自西北向东南倾斜,西北为丘陵台地。东南为三角洲冲积平原。全境河道纵横交错,间有低山小丘错落。西江流经市区东部边境,江门河斜穿市区中心。丘陵低山的山地为赤红壤,围田区为近代河流冲积层,高地发育成潮沙土,低地发育成水稻土,土壤肥沃。地质情况较简单,基岩主要为白垩纪泥质板岩,因长年处于稳定上升和受风化影响,风化层较厚,约在海拔 65 米以下(黄海高程)。市区西北为寒武系地层,主要为石英砂岩、粉砂岩、硅质页岩、粉砂质页岩等组成;市区东北牛头山为加里东期混合花岗岩。西江断裂具有一定的活动规模。

3、气候与气象

江门市区地处北回归线以南,濒临南海,属南亚热带海洋性季风气候,常年气候温和湿润,日照充分,雨量充沛;冬季受东北季风影响,夏季受东南季风影响,多年平均风速 2.4 米/秒。根据 2001-2005 年气象观测资料,近五年的平均气温为 22.9℃,月平均气温以 1~2 月最低,7~8 最高。极端最高气温是 38.3℃,极端最低气温是 2.7℃。年平均气压为 1008.9hPa。平均年降雨量 1589.5 毫米,雨日 181 日,最大日降雨量为 169.2 毫米,每年 2~3 月常有低温阴雨天气出现,降雨多集中在 5~9 月,形成明显的雨季汛期。受海洋性气候影响,年平均相对湿度为 76%,年平均日照时数为 1823.6 小时,日照率为 41%,年平均蒸发量为 1759 毫米。

4、水文水系特征

江门市境内河流纵横交错,主要河流为西江、潭江和沿海诸小河,流经江门市区的主要水系有西江干流的西海水道、江门河和天沙河。河流多属洪潮混合型。

本项目所在的江海区水系发达,河道、沟渠纵横交错,主要地表水体有:西江及

西江支流江门河、江门水道、礼乐河,及其麻园河、龙溪河与马鬃沙河等河涌、还有农用的人工主灌溉渠等。水流主流向均由北向南,最终汇入南海。河网水位受上游来水和南海潮汐、天文潮、风暴潮的影响显著。河网潮汐为不规则半日混合潮,具有明显的年际、年内、太阳月、日内等长、中、短周期的变化。流经西海水道年平均流量为7764m³/s,全年输水总径流量为2540亿m³。周郡断面90%保证率月平均流量为2081m³/s,被潮连岛分隔后西南侧的北街水道,90%保证率月平均流量为999m³/s。西海水道在北街又分出江门河,向西南斜穿江门市区,汇集了天沙河水,在文昌沙分为两条水道,其一为礼乐河,属珠江三角洲河网的二级水道,折向南流,在新会大洞口出银洲湖,最后经崖门流入南海。本项目生活污水排放量为96m³/a。,经化粪池预处理后经市政管网排入江海污水处理厂。

四、环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环境、生态环境等):

本项目选址所在区域环境功能属性见表 4-1:

表 4-1 项目所在区域环境功能属性一览表

序号	项目	类别
1	水环境功能区	根据《广东省地表水环境功能区划》(粤府函[2011]29号),本项目所在地纳污水体为麻园河,麻园河执行《地表水环境质量标准》(GB3838-2002)V类标准
2	环境空气质量功能区	根据《江门市环境保护规划》(2007年12月),项目属二类区域,执行《环境空气质量标准》 (GB3095-2012)及2018年修改单中的二级标准
3	声环境功能区	根据《关于印发<江门市声环境功能区划>的通知》(江 环[2019]378号)中《江海区声环境功能区划示意图》 (附图6),项目所在地属3类区域,项目厂界执行 《声环境质量标准》(GB3096-2008)3类标准
4	地下水功能区	根据《广东省地下水功能区划》(粤办函[2009]459号),珠江三角洲江门新会不宜开发区(代码H074407003U01),执行《地下水水质量标准》(GB/T14848-93)V类标准
5	是否基本农田保护区	否
6	是否风景名胜保护区	否
7	是否水库库区	否
8	是否污水处理厂集水范围	是,属于江海污水处理厂纳污范围
9	是否管道煤气管网区	否
10	是否环境敏感区	否
11	是否饮用水水源保护区	否

本项目所在区域的环境质量现状如下:

1、环境空气质量现状

根据《江门市环境保护规划》(2006-2020 年),项目所在区域属二类环境空气功能区, SO_2 、 NO_2 、 PM_{10} 、CO、 $PM_{2.5}$ 和 O_3 执行《环境空气质量标准》(GB3095-2012)

及其修改单二级标准,TVOC 执行《环境影响评价技术导则大气环境》(HJ2.2-2018) -附录 D 中的污染物空气质量浓度参考限值。

根据《2019年江门市环境质量状况(公报)》(网址: http://www.jiangmen.gov.cn/bmpd/jmssthjj/hjzl/ndhjzkgb/content/post_2007240.html)中2019年度中江海区空气质量监测数据进行评价,监测数据详见下表 3-2。

指标 SO_2 NO_2 PM_{10} $PM_{2.5}$ CO O_3 监测值 ug/m³ 11 37 57 30 1200 182 江海区 标准值 ug/m³ 60 40 70 35 4000 160 占标率% 18.33 92.50 81.43 85.71 30.00 113.75

表 3-2 区域环境空气现状评价表

由上表可知,江海区 SO₂、NO₂、PM₁₀、PM_{2.5}、CO 达到《环境空气质量标准》

达标

达标

达标

不达标

(GB3095-2012)及其修改单二级标准,O3未能达到《环境空气质量标准》

达标

达标

达标情况

(GB3095-2012)及其修改单二级标准要求,表明项目所在区域江海区为环境空气质量不达标区。

本项目污染因子 TVOC 引用位于项目西北面约 1.6km 的《励福(江门)环保科技股份有限公司年拆解 3000 吨微型计算机、3500 吨电话单机和 3500 吨移动通信手持机扩建项目环境影响报告书》(批复号: 江海环审[2018]84号)中广东新创华科环保股份有限公司于 2018 年 4 月 25 日至 5 月 01 日对南山村等的检测有关数据(见附件 8),具体监测结果及统计数据见下表。

表 3-3 TVOC 监测结果

大 5-5 1100 皿物和木			
采样点	监测频次	监测结果	
	2018.04.25	0.17	
	2018.04.26	0.18	
	2018.04.27	0.20	
G1 项目位置	2018.04.28	0.25	
	2018.04.2	0.23	
	2018.04.30	0.15	
	2018.05.01	0.12	
	2018.04.25	0.04	
	2018.04.26	0.22	
	2018.04.27	0.24	
G2 南山村	2018.04.28	0.24	
	2018.04.29	0.05	
	2018.04.30	0.24	
	2018.05.01	0.20	
G3 七四村	2018.04.25	0.17	
O2 CE44	2018.04.26	0.07	

2018.04.27	0.04
2018.04.28	0.21
2018.04.29	0.06
2018.04.30	0.18
2018.05.01	0.12
2018.04.25	0.15
2018.04.26	0.10
2018.04.27	0.23
2018.04.28	0.14
2018.04.29	0.04
2018.04.30	0.13
2018.05.01	0.15
2018.04.25	0.11
2018.04.26	0.06
2018.04.27	0.19
2018.04.28	0.04
2018.04.29	0.08
2018.04.30	0.19
2018.05.01	0.09
2018.04.25	0.03
2018.04.26	0.16
2018.04.27	0.16
2018.04.28	0.21
2018.04.29	0.04
2018.04.30	0.12
2018.05.01	0.12
环境影响评价技术导则大气环	<0.60
境(HJ2.2-2018)附录 D	< 0.60
达标情况	 达标
	2018.04.28 2018.04.29 2018.04.30 2018.05.01 2018.04.25 2018.04.26 2018.04.27 2018.04.28 2018.04.29 2018.04.30 2018.05.01 2018.04.25 2018.04.25 2018.04.27 2018.04.28 2018.04.29 2018.04.29 2018.04.29 2018.04.29 2018.04.29 2018.04.25 2018.04.25 2018.04.25 2018.04.25 2018.04.25 2018.04.25 2018.04.25 2018.04.26 2018.04.27 2018.04.28 2018.04.28 2018.04.29 2018.04.28 2018.04.29 2018.04.30 2018.05.01 环境影响评价技术导则大气环 境(HJ2.2-2018) 附录 D

监测结果表明,项目所在区域 TVOC 达到《环境影响评价技术导则大气环境 (HJ2.2-2018)》(HJ2.2-2018)附录 D 的空气质量浓度参考限值,项目所在区域 TVOC 环境空气质量现状良好。

根据《关于印发<2017年江门市臭氧污染防治专项行动实施方案>的通知》,江门市生态环境局已对重点控制区的 VOCs 重点监管企业限产限排,开展 VOCs 重点监管企业"一企一策"综合整治、对 VOCs"散乱污"企业排查和整治等工作,根据《江门市挥发性有机物(VOCs)整治与减排工作方案(2018-2020年)》的目标,2020年全市现役源 VOCs 排放总量削减 2.12 万吨。

预计到 2020 年主要污染物排放持续下降,并能实现目标,江门市污染物排放降低,环境空气质量持续改善,能稳定达到《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值。

2、地表水环境质量现状

项目污水通过市政管网排入江海污水处理厂集中处理,尾水排入麻园河。麻园河执行《地表水环境质量标准》(GB3838-2002)V类水质标准。参考《江海区马鬃沙河黑臭水体综合整治工程环境影响报告表》(批复文号江海环审[2018]38号)委托广东新创华科环保股份有限公司 2018年5月8日至2018年5月10日"W1:麻园河和龙溪河汇入口下游约500米"、"W2:麻园河和龙溪河汇入口下游约1500米"、"W3:麻园河和龙溪河汇入口下游约3500米"、"W3:麻园河和龙溪河汇入口下游约3500米"、"W3:麻园

本评价引用的水环境质量现状监测数据可符合《环境影响评价技术导则地表水环境(HJ2.3—2018)》水污染影响型三级 B 评价中水环境质量现状调查监测的要求:监测断面(包括对照断面、控制断面)、调查时期(5月枯水期)、采样频次(调查3天,每天取一水样)。

表 4-3 地表水质量监测结果

项目	采样日期	W1	W2	W3	标准值 mg/L
	2018.05.08	25.2	24.9	24.8	
水温(℃)	2018.05.09	25.5	25.9	25.8	
	2018.05.10	26.2	26.3	26.5	
11 法 / 工	2018.05.08	7.12	7.26	7.14	
pH 值(无 量纲)	2018.05.09	7.06	7.13	7.03	6~9
正7/17	2018.05.10	7.24	7.06	7.27	
	2018.05.08	2.63	3.06	3.31	
溶解氧	2018.05.09	2.88	3.12	3.26	≥2
	2018.05.10	2.89	3.14	3.21	
小	2018.05.08	32	28	26	
化学需氧 量	2018.05.09	24	25	23	≤40
	2018.05.10	36	24	31	
五日生化	2018.05.08	10.9	8.4	8.1	
五口生化 需氧量	2018.05.09	6.8	9.2	6.6	≤10
	2018.05.10	12.3	7.2	9.1	
	2018.05.08	27	44	85	
悬浮物	2018.05.09	29	50	72	≤150
	2018.05.10	32	39	63	
	2018.05.08	4.97	6.22	6.78	
氨氮	2018.05.09	4.32	6.34	6.53	≤2.0
	2018.05.10	4.59	5.92	6.28	
总磷	2018.05.08	1.55	4.08	4.14	≤0.4

					-
	2018.05.09	1.32	4.34	3.39	
	2018.05.10	1.37	3.33	4.31	
	2018.05.08	0.0003L	0.0003L	0.0003L	
挥发酚	2018.05.09	0.0003L	0.0003L	0.0003L	≤0.1
	2018.05.10	0.0003L	0.0003L	0.0003L	
	2018.05.08	0.02	0.03	0.03	
石油类	2018.05.09	0.03	0.04	0.01L	≤1.0
	2018.05.10	0.01	0.03	0.04	
	2018.05.08	0.05L	0.08	0.05	
阴离子表 面活性剂	2018.05.09	0.06	0.07	0.07	≤0.3
四省自1工万9	2018.05.10	0.05L	0.05L	0.08	
· ——					

由上表可见,马鬃沙河水质中的 BOD₅、氨氮、总磷、阴离子表面活性剂均超出 V 类标准,其余指标均能达到标准值。说明马鬃沙河的水质受到一定程度的污染,主要 是受农业面源污染和生活污水未经处理而直接排放污染。

根据《江门市水污染防治行动计划实施方案》:江门市、蓬江区两级政府逐步完善蓬江区排水系统建设,同时开展了江门市水环境综合治理(黑臭水体治理)工程。到 2020年,全市地表水水质优良(达到或优于III类)比例达到省下达的目标要求,力争达到 80%以上;对于划定地表水环境功能区划的水体断面消除劣 V 类,基本消除城市建成区黑臭水体;到 2030年,全市地表水水质优良(达到或优于III类)比例进一步提高,全面消除城市建成区黑臭水体。水环境质量将得到改善。

3、声环境质量现状

根据《江门市声环境功能区划》中的附图 8,项目所在地为 3 类声环境功能区,项目厂界声环境执行国家《声环境质量标准》(GB3096-2008)中的 3 类标准,昼间噪声值标准为 60dB(A),夜间噪声值标准为 50dB(A)。根据《2019 年江门市环境质量状况(公报)》,江门市区昼间区域环境噪声等效声级平均值 56.98 分贝,优于国家声环境功能区 2 类区(居住、商业、工业混杂)昼间标准;道路交通干线两侧昼间噪声质量处于较好水平,等效声级为 69.94 分贝,符合国家声环境功能区 4 类区昼间标准(城市交通干线两侧区域)。综上所述,项目所在区域符合《声环境质量标准》(GB3096-2008)中的 3 类标准要求,声环境质量现状较好。

4、生态环境

该项目地块处于人类活动频繁区,无原始植被生长和珍贵野生动物活动,区域生态系统敏感程度较低。

5、生态环境

该项目地块处于人类活动频繁区,无原始植被生长和珍贵野生动物活动,区域生态系统敏感程度较低。

主要环境保护目标:

1、环境空气保护目标

环境空气保护目标是维持项目所在地环境空气质量达到现有的大气环境水平,保持周围环境空气质量达到国家《环境空气质量标准》(GB3095-2012)及其 2018 年修改单中的二级标准。

2、水环境保护目标

水环境保护目标是保护评价范围内的麻园河不因本项目的运营受影响,使其达到《地表水环境质量标准》(GB3838-2002)中的V类标准。

3、声环境保护目标

声环境保护目标是确保该建设项目建成后,声环境质量符合《声环境质量标准(GB3096-2008)》3类标准。

4、地下水保护目标

地下水保护目标是确保该建设项目建设期及营运期不会对项目所在地地下水位及水质造成影响,使地下水水质符合《地下水水质量标准》(GB/T14848-2017)V类标准。

5、主要环境敏感保护目标

表 4-4 项目附近环境空气保护目标

坐标/m 名称		\$ /m	保护对	保护内	环境功能区	相对厂址	相对厂界距离	
一	X	Y	象	容	小块 切形区	方位	m	
中东村	1079	0	居民	大气	大气二类区	东面	1079	
 江门市孔 雀城	-500	-168	居民	大气	大气二类区	西南面	586	
泗丰村	-1381	-1327	居民	大气	大气二类区	西南面	1938	

广丰	-1700	-872	居民	大气	大气二类区	西南面	1900
备注:							
①本项目以	生产厂房位	立置为中	心坐标: 0	, 0, 正东	方向为 X 轴正方向	7,正北面为	Y 轴正方向。
②详见附图	3建设项目	目敏感点	分布图。				

五、评价适用标准

- 1、《地表水环境质量标准》(GB3838-2002)执行 V 类标准。
- 2、项目所在地执行《环境空气质量标准》(GB3095-2012)及其修改单中的 二级标准和《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D。
 - 3、《声环境质量标准》(GB3096-2008)执行3类标准。

表 5-1 环境质量标准一览表

	 环境要 素	选用标准	标准值					单位					
		//	рН	DO	COD_{Cr}	BOD ₅	氨氮						
	-1.TT-13x	《地表水环境质量 标准》 (GB3838-2002) V	标准》 (GB3838-2002) V	标准》 (GB3838-2002) V	标准》 (GB3838-2002) V	标准》 (GB3838-2002) V	标准》 (GB3838-2002) V	6~9	≥2	≤40	≤10	≤2.0	/1
	水环境							水温	挥发酚	LAS	总磷	石油类	mg/L
		类标准		≤0.1	≤0.3	≤0.4	≤1.0						
						取值时段							
环境			污迹	杂物	1 小时 平均值	24 小时 平均值	年平均 值						
质	质	《环境空气质量标 准》 (GB3095-2012) 及其修改单的二级 标准	PM_{10}		/	0.15	0.07						
量 标			S	O_2	0.50	0.15	0.06						
准	大气环		N	O_2	0.20	0.08	0.04						
	境		PM	$PM_{2.5}$		0.075	0.035	mg/m ³					
			C	О	10	4	/	(标准					
			O ₃		0.2	/	/	状态)					
		《环境影响评价技			8	小时平均值	直						
		术导则 大气环境》 (HJ2.2-2018)中附 录 D 标准	TVOC		0.6								
	字红体	《声环境质量》	标准	昼	间	夜	间	dB (A)					
	声环境 	(GB3096-2008)	3 类	6	5	5	5	ub (A)					

1、废气

有组织抛光金属粉尘执行广东省《大气污染物排放限值》(DB4427-2001)第二时段二级标准;

压铸产生的有机废气执行广东省《家具制造行业挥发性有机化合物排放标准》 (DB44 814-2010)表 1 排气筒 VOCs 排放限值中第 II 时段二级标准及表 2 无组织排放监控点浓度限值;

有组织熔化烟尘执行《工业炉窑大气污染物排放标准》(GB9078-1996)表 2 金属熔化炉二级标准;

无组织排放的颗粒物执行《工业炉窑大气污染物排放标准》(GB9078-1996) 表 3 其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限 值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准。

表 5-2 废气排放标准

环境 要素	排放源	选用标准		标准值		单位
		广东省《家具制造行业挥发 性有机物排放标准》	总 VOCs	最高允许排放浓度	30	mg/m ³
	排气筒	(DB44/814-2010)	芯 VOCS	最高允许排放速率	1.45	kg/h
	DA001	《工业炉窑大气污染物排		最高允许排放速率	/	kg/h
		放标准》(GB9078-1996) 表 2 金属熔化炉二级标准	烟尘	最高允许排放浓度	150	mg/m ³
	排气筒	广东省《大气污染物排放限值》(DB44/27-2001)第二		最高允许排放速率	4.8	kg/h
	DA002	时段二级标准 (20 米排气筒)	粉尘	最高允许排放浓度	120	mg/m ³
		《工业炉窑大气污染物排 放标准》(GB9078-1996) 表 3 其他窑炉无组织排放 烟(粉)尘最高允许浓度		无组织排放监控浓度 限值	5	mg/m ³
	厂界	广东省《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放浓度限值	颗粒物	无组织排放监控浓度 限值	1.0	mg/m ³
		较严者		无组织排放监控浓度 限值	1.0	mg/m ³
		广东省《家具制造行业挥 发性有机物排放标准》 (DB44/814-2010)无组 织排放监控点浓度限值	总 VOCs	无组织排放监控浓 度限值	2.0	mg/m³

总量控制指标

2、废水

生活污水经三级化粪池处理达到广东省地方标准《水污染物排放限值》 (DB44/26-2001)中第二时段三级标准和江海污水处理厂进水标准较严者,然后排入江海污水处理厂处理达标后排入麻园河。

表 5-5 项目生活污水排放标准 单位: mg/L

名称	CODCr	BOD5	SS	NH3-N	总磷
(DB44/26-2001)中 第二时段三级标准	≤500	≤300	≤400		
江海污水处理厂 进水标准	≤220	≤100	≤150	≤24	≤10
较严者	≤220	≤100	≤150	≤24	≤10

3、噪声

厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类功能区排放限值: 昼间 \leq 65dB(A), 夜间 \leq 55 dB(A);

4、其他标准

《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)(2013年修订)、《危险废物贮存污染控制标准》(GB18597-2001)(2013年修订)。

建议分配总量控制指标:

VOCs0.061t/a(有组织排放量为 0.029t/a,无组织排放量为 0.032t/a) 项目最终执行的污染物排放总量控制指标由当地环境保护行政主管部门分配与核定。

六、建设项目工程分析

工艺流程简述(图示):

一、施工期

建设单位使用已有厂房, 不需要建筑施工。

二、运营期生产工艺分析

根据建设单位提供的资料,项目具体工艺流程和产污环节如下:

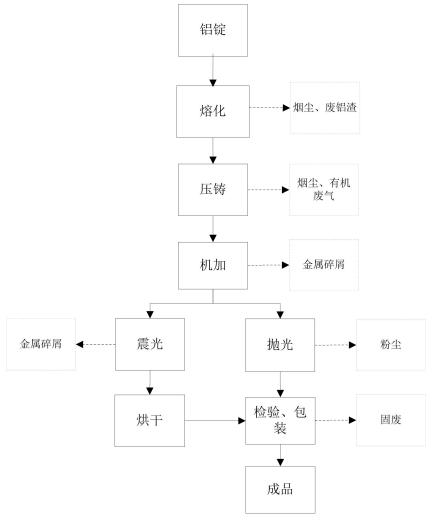


图 6-1 项目工艺流程图

主要工艺流程简述:

(1) 熔化:将铝锭熔化成液体的高温铝水。本项目采用每台压铸机配套一台电熔炉进行加热熔化,铝锭熔化温度约为 660° 、铝锭中的杂质 Mg、Zn、Ga 会熔化,其主要污

染物为烟尘,还会产生少量废铝渣;

- (2) 压铸:用压铸机将高温铝水压铸成所要求的产品。产品的重量和规格不同,所用的压铸机和模具也不相同。在铝水倒入模具之前,要在模具表面喷洒脱模液,以保护模具和保证铸件质量。其中,项目喷洒的脱模液为配制液,主要为水和脱模剂(100:1),脱模液受到高温影响最终气化为水蒸汽:
 - (3) 机加:对铝铸件进行钻孔、切割加工;
- (4) 震光: 把中小尺寸铝铸件放入震光机中,使工件和研磨石密切均匀混合,以研磨工件表面,去工件毛边,震光机配套设置一个循环水箱,设置格栅以隔离研磨产生的金属碎屑;
 - (5) 烘干: 使用小型烘干炉烘干工件表面的水分;
- (6) 抛光:利用抛光机械的各种磨头或麻(布)轮的高速旋转,对大尺寸的铝铸件 表面进行磨削加工,使之光滑明亮,增加产品的亮度和光洁度。
 - (7) 包装:对产品检验,合格后进行包装出货。
 - 注:本项目铝锭不需要进行精炼,不添加其他合金。

产污环节:

- (1) 废气:项目铝锭熔化过程中产生的金属烟尘、压铸过程中产生的金属烟尘和有机废气、抛光过程中产生的粉尘、震光过程中产生的金属碎屑和废铝渣隔渣;
 - (2) 废水: 员工日常生活产生的生活污水、震光机产生的生产废水;
 - (3) 噪声: 生产过程产生机械噪声和原材料、半成品、成品搬运噪声;
- (4) 固废: 机加工产生的金属碎屑和废铝渣、废包装材料、空压机产生的废机油、 有机废气治理产生的废活性炭和员工日常生活产生的生活垃圾。

主要污染

营运期污染源分析

- 1、废气
- (1) 机加工、震光工序

项目钻孔、切割、震光过程会产生少量的金属碎屑,金属碎屑粒径较大,质量较重,可通过自然沉降下落到地面,待金属碎屑沉降后定期清扫地面收集处理即可。该部分粉尘本评价不作为大气污染源分析。

(2) 熔化工序

项目采用电熔炉对铝锭进行熔化,铝锭在高温熔化后产生一定量的含铝烟尘,参考《第一次全国污染源普查工业污染源产排污系数手册(2010 修订)》中 3591 钢铁铸件制造业产排污系数表(续 8):铸铝件,采用感应炉、压铸工艺的,规模≤5000 吨/年,产污系数为烟尘: 0.7 千克/吨-产品。项目消耗铝锭量为 70t/a,生产过程中原材料损耗忽略不计,则烟尘产生量约 0.049 t/a。

(3) 压铸工序

项目共设3台压铸机,压铸时高温铝液入模或成型启模过程中,采用高压喷枪喷射脱模剂,防止铝件粘附在模具上,由于温差较大,瞬时产生大量汽雾。本项目所用的脱模剂为水性脱模剂,主要成分进口有机硅乳液10%,氧化乙烯均聚物2%,矿物油2%,耐高温润滑脂4%,其余为水。脱模剂与水稀释倍数为100,兑水后水的质量比约占99%。项目压铸温度约为660℃,脱模剂在高温作用下会产生挥发性有机物(本环评按VOCs计),根据脱模剂的主要成分按最不利情况估算,VOCs的挥发率按18%计。根据企业提供的资料,本项目全厂脱模剂的最大消耗量约2t/a,喷射过程中为防止工件表面起水泡,一般适量喷射,按90%气化计算,则VOCs的产生量约为0.324t/a。

以下对废气产排情况进行分析:

根据建设单位提供废气设计方案,项目每台压铸机配套一台电熔炉,故拟将烟尘和有机废气经集气罩收集后,经过"水喷淋除尘装置+UV光解+活性炭吸附"装置处理达标后由 25 米排气筒(DA001)高空排放。按照《简明通风设计手册》中有关公式,根据类似项目实际治理工程的情况以及结合本项目的设备规模,项目拟在每台机器废气产生区域上方设置集气罩收集废气,为保证收集效率,集气罩的控制风速要在 0.5m/s 以上。按照以下经验公式计算得出设备所需的风量 L。

L=3600*K*P*H*Vx

其中: P—集气罩敞开面的周长(取2.0m);

H—集气罩口至有害物源的距离(取0.8m);

Vx—控制风速(取0.5m/s):

K—考虑沿高度分布不均匀的安全系数,通常取K=1.4。

由上可计算得出,单个集气罩的风量为 4032m³/h,考虑到风机在实际使用时的管道可能漏风,参考《简明通风设计手册》风量附加安全系数为 1.05-1.2,本项目取 1.2,所需的风机风量为 4838m³/h。根据以上计算所得,设施设计风量取整为 5000m³/h,一共 3 个集气罩,总风量为 15000m³/h,收集后的废气经一套"水喷淋除尘装置+UV光解+活性炭吸附"装置处理后由一条 25 米高排气筒(DA001)排出。收集效率按 90%计,VOCs 去除效率按 90%计(UV 光解处理效率为 35%、活性炭吸附效率为 85%),除尘效率按 90%计。有机废气的产生及排放情况详见下表:

本项目各大气污染物产排污情况见表 6-1。

表 6-1 熔化、压铸工序大气污染物产排污情况表

	N= Nt skin	生产	车间
	污染物 ——	VOCs	烟尘
交件	产生量(t/a)	0.324	0.049
产生	产生速率(kg/h)	0.14	0.020
	收集率	90%	90%
	风量 (m³/h)	15000	15000
	产生量(t/a)	0.292	0.044
	产生速率(kg/h)	0.12	0.018
	产生浓度(mg/m³)	8.1	1.23
有组织	"UV 光解+活性炭吸附"装置 效率	90%	90%
	排气筒离地高度(m)	25	25
	排气筒编号	DA001	DA001
	排放量(t/a)	0.029	0.004
	排放速率(kg/h)	0.01	0.002
	排放浓度(mg/m³)	0.81	0.12
	无组织排放(t/a)	0.032	0.005
	排放速率(kg/h)	0.01	0.002
	总排放量(t/a)	0.061	0.009

(4) 抛光工序

项目大尺寸工件在抛光过程中会产生一定量的抛光粉尘。根据《第一次全国污染源普查工业污染源产排污系数手册》中金属结构制造业的粉尘产污系数为 1.523 千克/吨产品。项目需抛光的工件约 65t/a,则粉尘产生量约 0.1t/a。

根据建设单位提供废气设计方案,项目建成后拟在抛光工位(2个)设置集气罩,按照《简明通风设计手册》中有关公式,根据类似项目实际治理工程的情况以及结合本项目的设备规模,项目拟在每台机器废气产生区域上方设置集气罩收集废气,为保证收集效率,集气罩的控制风速要在0.5m/s以上。按照以下经验公式计算得出设备所需的风量L。

L=3600*K*P*H*Vx

其中: P—集气罩敞开面的周长(取2.0m);

H—集气罩口至有害物源的距离(取0.8m);

Vx—控制风速(取0.5m/s);

K—考虑沿高度分布不均匀的安全系数,通常取K=1.4。

由上可计算得出,单个集气罩的风量为4032m³/h,考虑到风机在实际使用时的管道可能漏风,参考《简明通风设计手册》风量附加安全系数为1.05-1.2,本项目取1.2,所需的风机风量为4838m³/h。根据以上计算所得,设施设计风量取整为5000m³/h,一共2个集气罩,总风量为10000m³/h,收集后的废气经一套"UV光解+活性炭吸附"装置处理后由一条25米高排气筒(DA002)排出。收集效率按90%计,再经水帘除尘处理设施处理,根据《工业源产排污系数手册(2010修订)》中烟尘产生与排放的治理技术,湿法除尘法的除尘效率85~90%,本评价保守估计按下限85%取值。最后引至厂房楼顶离地25米高空排放(排气筒编号DA002)。收集效率按90%计,去除效率按90%计(UV光解处理效率为35%、活性炭吸附效率为85%)。有机废气的产生及排放情况详见下表:

表6-2 项目抛光废气产排情况表

		生产车间
	15条初	粉尘
产生	产生量(t/a)	0.1
) 生	产生速率(kg/h)	0.041
	收集率	90%
	风量 (m³/h)	10000
	产生量(t/a)	0.09
有组织	产生速率(kg/h)	0.04
有组织	产生浓度(mg/m³)	3.75
	"UV 光解+活性炭吸附"装置效率	85%
	排气筒离地高度(m)	25
	排气筒编号	DA002

排放量(t/a)	0.014
排放速率(kg/h)	0.006
排放浓度(mg/m³)	0.56
无组织排放(t/a)	0.01
排放速率(kg/h)	0.004
总排放量(t/a)	0.024

表 6-3 本项目废气产排情况总览表

污丝	 - - - - - - -	污染物	产生量	产生速率	产生浓度	排放量	排放速率	排放浓度
132	1.7.本协		(t/a)	(kg/h)	(mg/m^3)	(t/a)	(kg/h)	(mg/m³)
	DA001 排气筒	VOCs	0.292	0.12	8.1	0.029	0.01	0.81
有组织	DA001 排气筒	烟尘	0.044	0.018	1.23	0.004	0.002	0.12
	DA002 排气筒	烟尘	0.09	0.04	3.75	0.014	0.006	0.56
无组织	生产	VOCs	0.032	0.01		0.032	0.01	
70211-71	车间	烟尘	0.015	0.006		0.015	0.006	

2、废水

(1) 生活污水

项目运营期主要为员工日常生活产生的生活污水。参照《广东省用水定额》(DB44/T 1461-2014),人均用水按 40L/人*d,本项目员工 10 人计算,则本项目生活用水 120 m^3/a ,排水系数按 80%计算,则生活污水排水量为 96 m^3/a 。污染因子以 SS、CODer、BOD₅、氨 氮为主。生活污水污染物的产排情况见下表。

表 6-4 项目生活污水的产排情况

污药	杂物	CODer	BOD ₅	SS	NH ₃ -N
生活污水	产生浓度 (mg/L)	300	200	250	25
TIH 13/1	产生量(t/a)	0.029	0.012	0.024	0.002
96m³/a	排放浓度 (mg/L)	220	100	150	15
	排放量(t/a)	0.021	0.010	0.014	0.001

(2) 冷却循环水

项目压铸设备共配套 1 座冷却塔,冷却水在水池内循环使用,冷却塔冷却水的循环量约为 10m³/h。冷却塔无废水外排,只需定期补水,补水量约为循环水量的 2.5%,则补水

量约为2 t/d, 600 t/a。

(3) 喷淋循环水

项目水喷淋除尘装置中喷淋水为循环使用,定期捞渣,无废水外排,只需定期补水,补充水量约 3t/a。

(2) 震光循环水

项目震光机中用水为循环使用,配套一个循环水箱,水箱容量约为1m³,水箱设置格栅,定期捞渣,废水经沉淀后上清液循环使用只需定期更换下层的捞渣,工件带出消耗量约2t/a,则补水量约2t/a。

3、噪声

项目 A 厂区噪声主要为机械设备运行产生的噪声,各机器设备运行时产生的噪声值约为 65~90dB(A)。

设备名称	数量(单位: 台)	声源强度(dB(A))
压铸机	3	70-90
钻孔机	20	65-85
切割机	3	65-85
震光机	1	65-85
抛光机	2	65-85
烘干机	1	65-80
冷却塔	1	65-70
空压机	1	65-80

表 6-5 主要产噪设备及声源强度

4、固体废弃物

项目产生的固体废物主要为废包装材料、废铝渣、粉尘渣、金属碎屑、废活性炭、脱模剂桶和生活垃圾。

(1) 一般固体废物

项目生产过程中铝锭熔化后,表面会产生一层废铝渣,产生量按总铝量的5%估算,废铝渣产生量约为3.5t/a;铝铸件机加工过程中会产生少量的金属碎屑,约占总铝用量的0.2%,则金属碎屑产生量约为0.14t/a;水喷淋装置和震光机会产生一定量的粉尘渣,产生量约0.35t/a;废包装材料产生量约1t/a。

(2) 办公、生活垃圾

根据建设单位提供的资料,项目员工人数为 10 人,均不在厂区内住宿,员工人均产生量为 0.5kg/d • 人计算,则项目员工办公生活垃圾产生量约为 1.5t/a,指定地点堆放,每日由环卫部门清理运走,并定期对堆放点进行清洁、消毒。

(3) 脱模剂桶

项目生产过程中会产生一定量的脱模剂桶,产生量约 0.1t/a。根据《固体废物鉴别标准 通则(GB 34330—2017)》中第 6.1 条的规定,脱模剂桶为不需要修复和加工即可用于其原始用途的物质,故可不作为固体废物管理,经收集后可交原供应商回收利用。

(4) 危险废物

项目有机废气经UV光解+活性炭吸附装置处理后高空排放,会有废UV灯管、废活性 炭产生。

废 UV 灯管:项目废气治理设施 UV 光解净化器中 UV 灯管为紫外含汞灯管,UV 灯管使用一段时间达不到设定要求时需更换,UV 灯管的连续使用时间不应超过 4800h,项目 UV 光解装置年损灯管约 50 根,单根灯管重 200g,则废 UV 灯管产生量约为 0.005t/a。属于危险废物的 HW29 含汞废物,危险废物代码为 900-023-29,交由具有危险废物处理资质的单位统一处理,并签订危废处理协议。

废活性炭:本项目收集的有机废气量为0.292t/a,拟经UV光解+活性炭吸附处理,废气先经UV光解处理,再经活性炭吸附装置处理,活性炭吸附效率按85%计算,则活性炭吸附装置吸附VOCs量约为0.161t/a。按每1t的活性炭可吸附0.25t的有机废气,则需活性炭0.644t/a。

根据废气治理方案,活性炭箱为1.5立方,活性炭装载量约为0.65立方,根据活性炭密度为500kg/m³,则活性炭填充量为0.325t,每年更换2次,总更换量0.65t/a(满足有机废气需要≥0.65t/a)。则废活性炭产生量约为0.811t/a(废活性炭量=活性炭用量+吸附有机废气量),属于危险废物,交由具有危险废物处理资质的单位同意处理,并签订危废处理协议》。

根据《国家危险废物名录》(2016 版)、《建设项目危险废物环境影响评价指南》(环境保护部公告 2017 年 第 43 号),项目危险废物汇总表见下表。

表6-6 本项目危险废物汇总表

 序 号	危险废 物名称	危险废 物类别	危险废物代码	产生量 (吨/ 年)	产生 工 序及 装置	形态	产废周期	危险 特性	暂存 措施	处置 措施
1	废活性 炭	其他废 物	HW49	0.811	废气	固态	2 次/年	毒性	项目 暂存	交给 有资
2	废 UV 灯 管	含汞废物	HW29	0.005	处理 装置	固态	1 次/年	毒性	在危 废暂 存区	质单 位回 收

七、项目主要污染物产生及预计排放情况

内容	排放源 (编号)	污染物名称	处理前产生浓度及 产生量(单位)	排放浓度及排放量 (单位)		
大气污染物	添	烟尘(有组织)	1.23mg/m ³ , 0.044t/a	0.12mg/m^3 , 0.004t/a		
	熔化工序	烟尘(无组织)	0.005t/a	0.005t/a		
	压铸工序	VOCs (有组织)	8.1mg/m³, 0.292t/a	0.81mg/m^3 , 0.029t/a		
		VOCs (无组织)	0.032t/a	0.032t/a		
	抛光工序	粉尘(有组织)	3.75mg/m³, 0.09t/a	0.56mg/m^3 , 0.014t/a		
		粉尘(无组织)	0.01t/a	0.01t/a		
水污染物	生活污水 (96t/a)	CODer	300mg/m ³ , 0.029t/a	$220 mg/m^3$, $0.021 t/a$		
		BOD ₅	120mg/m³, 0.012t/a	100mg/m^3 , 0.010t/a		
		SS	250mg/m³, 0.024t/a	150mg/m ³ , 0.014t/a		
		NH ₃ -N	25mg/m ³ , 0.002t/a	15mg/m^3 , 0.001t/a		
	一般固体废物	废包装材料	1t/a	0t/a		
		废铝渣	3.5t/a	Ot/a		
固 体 废 物		金属碎屑	0.14t/a	Ot/a		
		粉尘渣	0.35t/a	Ot/a		
	办公生活	办公、生活垃圾	1.5t/a	0/a		
	危险废物 废活性炭 废 UV 灯管		0.811t/a 0.005t/a	0t/a 0t/a		
—————————————————————————————————————	项目噪声源主要来自于各生产设备运转时产生的噪声,根据类比分析,其噪声源强在 65~90dB(A)之间					

主要生态影响(不够时可附另页)

本项目为租用现有厂房,不涉及生态环境影响。

八、环境影响分析

施工期环境影响分析:

本项目使用已建厂房进行生产,不存在施工期。

营运期环境影响分析:

1、大气环境影响分析

(1) 评价等级判定与估算结果

根据《环境影响评价技术导则—大气环境》(HJ2.2-2018),选择项目污染源正常排放的主要污染物及排放参数,采用估算模型(AERSCREEN)计算污染源的最大环境影响,然后按评价工作分级判据进行分级。评价等级按照表 7-10 的分级判据进行划分。

评价工作等级
 一级
 上级
 上级
 上级
 Pmax<10%
 上级
 Pmax<1%

表 8-1 评价等级判别表

a.模型参数

根据项目实际情况,采用模型参数见下表。

表 8-2 估算模型参数表

衣 8-2 伯昇模型参数衣					
	选项	取值			
城市/农村选	城市/农村	城市			
项	人口数 (城市选项时)	16万			
	最高环境温度/℃	38.5			
	最低环境温度/℃ 3.6				
	城市				
	区域湿度条件	湿润气候			
是否考虑地形	考虑地形	否			
定百 写 尼 地	地形数据分辨率/m				
	考虑海岸线熏烟	否			
是否考虑海岸 线熏烟	岸线距离/km				
——— —————————————————————————————————	岸线方向/°				

b.评价因子

本项目大气评价等级采用《环境影响评价技术导则 大气环境》(HJ2.2-2018)规

定的 AERSCREEN 软件进行估算判断,评价因子、评价标准、估算模型参数详见下表。

表 8-3 评价因子和评价标准表

评价因子	平均时段	标准值(ug/m³)	标准来源		
TVOC	1 小时平均值	1200	《环境影响评价技术导则·大气环境 (HJ2.2-2008) 附录 D 的浓度限值要求》		
PM_{10}	1 小时平均值	0.45	《环境空气质量标准》(GB3095-2012)		
TSP	1 小时平均值	0.9	二级浓度限值及其修改单		

备注:《环境影响评价技术导则—大气环境》(HJ2.2-2018)5.3.2.1 对仅有 8h 平均质量浓度限值、日平均质量浓度限值或年平均质量浓度限值的,可分别按 2 倍、3 倍、6 倍折算为 1h 平均质量浓度限值。

c.污染源及污染参数

根据工程分析结果,估算时污染源及污染参数见下表。

表 8-4 主要废气污染源参数一览表(点源)

 污 染	排气 筒底	排气筒参数				年排 放小 排放		污染物排放速率 (kg/h)		
源 名 称	部海 拔高 度(m)	高度 (m)	内径 (m)	温度 (℃)	风量 (m³/h)	流速 (m/s)	时数 (h)	工况	VOCs	颗粒物
DA 001	0	25	0.6	25	15000	14.74	2400	正常 排放	0.01	0.002
DA 002	0	25	0.5	25	10000	14.15	2400	正常 排放	/	0.006

表 8-5 主要废气污染源参数一览表(面源)

编号	名称	面源海 拔高度 /m	面源 长度 /m	面源宽 度/m	与正北 向夹角 <i>/</i> °	面源有 效排放 高度/m	年排放 小时数 /h	排放 工况	污染物 速率/(VOCs	加排放 kg/h) 颗粒 物
1	生产 车间	0	68	15		3	2400	正常 排放	0.005	0.00

注:有效高度取对应楼层的门窗的平均高度。

③最大落地浓度

项目所有污染源的正常排放的污染物的 Pmax 和 D10%预测结果如下表所示。

表 8-6 Pmax 和 D10%预测和计算结果一览表

	PM ₁₀ (DA	001)	VOCs (DA001)		
下风向距离/m	预测质量浓度/ (mg/m³)	占标率/%	预测质量浓度 /(mg/m³)	占标率/%	
10	0.000001	0.00	0.000003	0.00	

25	0.000037	0.01	0.000183	0.02
50	0.000034	0.01	0.000169	0.01
75	0.000028	0.01	0.00014	0.01
100	0.000049	0.01	0.000245	0.02
125	0.00008	0.02	0.0004	0.03
150	0.000087	0.02	0.000434	0.04
155	0.000087	0.02	0.000434	0.04
175	0.000086	0.02	0.000428	0.04
200	0.000082	0.02	0.000409	0.03
225	0.000077	0.02	0.000385	0.03
250	0.000072	0.02	0.00036	0.03
275	0.000067	0.01	0.000336	0.03
300	0.000063	0.01	0.000313	0.03
325	0.000058	0.01	0.000292	0.02
350	0.000054	0.01	0.000272	0.02
375	0.000051	0.01	0.000255	0.02
400	0.000048	0.01	0.000239	0.02
425	0.000045	0.01	0.000224	0.02
450	0.000042	0.01	0.000211	0.02
475	0.00004	0.01	0.000199	0.02
500	0.000038	0.01	0.000188	0.02
下风向最大质量 浓度及占标率%	0.000087(155 米处)	0.02	0.000434(155 米处)	0.04
	无			

	PM ₁₀ (DA002	!)	
下风向距离/m	预测质量浓度/ (mg/m³)	占标率/%	
10	0.000002	0.00	
25	0.00011	0.02	
50	0.000102	0.02	
75	0.000086	0.02	
100	0.000147	0.03	
125	0.00024	0.05	
150	0.00026	0.06	
155	0.000261	0.06	
175	0.000257	0.06	
200	0.000246	0.05	
225	0.000231	0.05	
250	0.000216	0.05	
275	0.000202	0.04	
300	0.000188	0.04	
325	0.000175	0.04	

350	0.000163	0.04	
375	0.000153	0.03	
400	0.000143	0.03	
425	0.000134	0.03	
450	0.000127	0.03	
475	0.000119	0.03	
500	0.000113	0.03	
下风向最大质量浓度及占标 率%	0.000261(155 米处)	0.06	
D10%最远距离/m	无		

	TSP(生产	<u>年间)</u>	VOCs(生产	车间)
下风向距离/m	预测质量浓度/ (mg/m³)	占标率/%	预测质量浓度 /(mg/m³)	占标率/%
10	0.017567	1.95	0.029278	2.44
25	0.019265	2.14	0.032108	2.68
35	0.020018	2.22	0.033363	2.78
50	0.010178	1.13	0.016963	1.41
75	0.004985	0.55	0.008309	0.69
100	0.003158	0.35	0.005262	0.44
125	0.002255	0.25	0.003758	0.31
150	0.001725	0.19	0.002875	0.24
175	0.00138	0.15	0.002301	0.19
200	0.00114	0.13	0.001899	0.16
225	0.000964	0.11	0.001606	0.13
250	0.00083	0.09	0.001384	0.12
275	0.000726	0.08	0.00121	0.10
300	0.000643	0.07	0.001071	0.09
325	0.000575	0.06	0.000958	0.08
350	0.000518	0.06	0.000863	0.07
375	0.000471	0.05	0.000784	0.07
400	0.00043	0.05	0.000717	0.06
425	0.000395	0.04	0.000659	0.05
450	0.000365	0.04	0.000609	0.05
475	0.000339	0.04	0.000565	0.05
500	0.000316	0.04	0.000526	0.04
1000	0.000122	0.01	0.000203	0.02
1500	0.00007	0.01	0.000116	0.01
2000	0.000047	0.01	0.000078	0.01
2500	0.000035	0.00	0.000058	0.00
下风向最大质量 浓度及占标率%	0.020018 (35 米处)	2.22	0.033363 (35 米处)	2.78

D10%最远距离
/m

无

从上表可知,本项目P_{max}最大值出现为生产车间面源排放的VOCs,P_{max}值为2.78,C_{max}为33.363ug/m³,根据《环境影响评价技术导则大气环境》(HJ2.2-2018)分级判据,确定本项目大气环境影响评价工作等级为二级。二级评价项目大气环境影响评价范围,以项目厂址为中心区域,自厂界外延5km的矩形区域,二级评价项目不进行进一步预测与评价,只对污染物排放量进行核算。

由估算结果可见,各污染因子下风向最大落地浓度均能够满足广东省《家具制造行业挥发性有机物排放标准》(DB44/814-2010)无组织排放监控点浓度限值和《工业炉窑大气污染物排放标准》(GB9078-1996)表3其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准的要求,评价范围内各污染物估算值可达到《环境空气质量标准》(GB3095-2012)及其修改单中的二级标准和《环境影响评价技术导则大气环境》(HT2.2-2018)附录D的要求,对周围大气环境影响不大。

(2) 大气环境防护距离

根据《环境影响评价技术导则一大气环境》(HJ2.2-2018),"对于项目厂界浓度满足大气污染物厂界浓度,但厂界外大气污染物短期贡献浓度超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护距离,以确保大气环境防护区域外的污染物贡献浓度满足环境质量标准"。根据估算模型预测,项目排放污染物中的大气污染物短期贡献浓度未超过环境质量浓度限值,因此本项目无需设置大气环境防护距离。

(3) 污染控制措施

项目熔化、压铸工序拟将烟尘和有机废气经集气罩收集后,经过水喷淋除尘装置 +UV 光解+活性炭吸附装置处理达标后由 25 米排气筒 (DA001) 高空排放,收集效率 约 90%,除尘效率达到 90%,UV 光解+活性炭吸附装置对 VOCs 处理效率达 90%,风机总风量约为 15000m³/h。

有机废气处理可行性分析:

UV 光解: 在特制催化剂作用下利用高能 UV 紫外线光束分解空气中的氧分子产

生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生 臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的 氧化作用,对恶臭气体及其它刺激性异味有极强的清除效果,同时大量减少 VOC 的 排放,利用特制的高能高臭氧 UV 紫外线光束照射恶臭气体苯乙烯和苯、甲苯的分子 键,使呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物,如 CO2、H2O 等。根据《印刷、制鞋、家具、表面涂装(汽车制造)行业挥发性有机物 总量减排核算细则》光催化氧化法治理效率 50~80%。

活性炭吸附装置:废气通过活性炭吸附层,由于固体吸附剂(活性炭)和废气中的有机物之间存在分子间引力,废气有机物能被活性炭吸附,从而使气体得到净化。项目使用的蜂窝式活性炭,因其表面积大、微孔发达、孔径分布广、吸附容量大、速度快,同时再生容易快,脱附彻底的优点,因此具有较高的去除率。《挥发性有机物排污费征收细则》固定床活性炭吸附 30~90%。

项目拟在抛光工位设置集气罩,金属颗粒物经水帘除尘器处理后,废气由 25 米 高排气筒高空排放。

水帘除尘器处理设施原理:含金属粉尘气体以正向进入除尘器,与水帘接触,同时金属颗粒在重力的作用下,落入水槽中,分离的金属颗粒落入除尘器底端,和水混合溢流出进入沉淀池,金属颗粒与水分离后,水继续回用,达到回收金属颗粒以及循环用水的目的。水帘除尘器工作原理如下图:

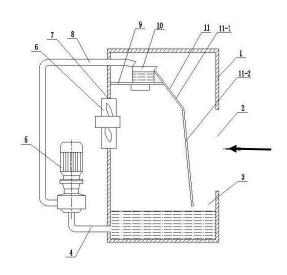


图 8-1 水帘除尘器工作原理示意图

根据《工业源产排污系数手册(2010 修订)》中烟尘产生与排放的治理技术,湿 法除尘法除尘效率 85~90%,本评价保守保计按下限 85%取值。

因此,本项目收集金属粉尘使用水帘除尘器,去除率达到85%是合理的。

项目在抛光过程产生的金属粉尘,大部分金属粉尘被水帘除尘器所收集,少量金属颗粒在车间沉降,经加强车间内通排风后,项目厂界颗粒物浓度能符合《工业炉窑大气污染物排放标准》(GB9078-1996)表3其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准的要求,另外沉降在地面的金属粉尘和湿式水膜除尘器产生的沉渣由人工进行及时清扫,金属粉尘和沉渣交于废品商回收。

(4) 污染物排放量核算

表8-7 大气污染物有组织排放量核算表

	\$40 - \$4 414 \$14 B4 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15						
序号	排放口编	污染物	核算污染物浓	核算排放速	核算年排放		
, • •	号		度	率	量		
主要排放口							
1	DA001	颗粒物	0.12mg/m ³	0.002kg/h	0.004t/a		
1		VOCs	0.81mg/m^3	0.01kg/h	0.029t/a		
2	DA002	颗粒物	0.56mg/m ³	0.006kg/h	0.014t/a		
主要排放口合计		VOCs			0.029t/a		
		颗粒物			0.018t/a		

表8-8大气污染物无组织排放量核算表

, _	排放	产物	污染	主要污	国家或地方污染物	排放标准	年排放
序号	口编 号	环节	物		标准名称	浓度限值	量(t/a)
1	生产车间	熔化工序	颗粒物	水喷淋 塔+UV 光解+	《工业炉窑大气污染物排放标准》 (GB9078-1996)表 2金属熔化炉二级标准	150mg/m ³	0.005
		压铸 工序	VOC s	活性炭 吸附	《家具制造行业挥 发性有机化合物排 放标准》(DB44	30mg/m ³	0.032

					814-2010)Ⅱ时段				
					排气筒VOCs排放				
					限值				
					广东省地方标准				
	DAGO	+1++ 11/	田星小子	水喷淋	《大气污染物排放		0.01		
3	DA00 2	抛光	颗粒		限值》	120mg/m ³			
		工序	物	塔	(DB4427-2001)				
					第二时段二级标准				
	无组织排放量								
		JL 34 37 34			VOCs	0.032	2t/a		
	尤组织扩	非放总计			颗粒物	0.015t/a			
			表8	-9 大气汽	5染物年排放量核算				
	序号	·		污	染物	年排放量(1	(/a)		
	1			V	OCs	0.061			
	2			颗	粒物	0.033			
	·		ı						

(5) 小结

上述分析结果可知,外排有机废气满足《家具制造行业挥发性有机化合物排放标准》(DB44 814-2010)表1排气筒VOCs排放限值中第II时段二级标准及表2无组织排放监控点浓度限值的要求;有组织熔化烟尘满足《工业炉窑大气污染物排放标准》(GB9078-1996)表2金属熔化炉二级标准;有组织抛光粉尘满足广东省地方标准《大气污染物排放限值》(DB4427-2001)第二时段二级标准的要求,无组织排放的颗粒物满足《工业炉窑大气污染物排放标准》(GB9078-1996)表3其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准,预计对周围环境影响不大。

2、水环境影响分析

冷却、喷淋、震光循环用水:冷却、喷淋、震光用水循环使用,只需定期补充,不外排。

(1) 评价等级确定

根据《环境影响评价技术导则地表水环境(HJ 2.3—2018)》按照建设项目的影

响类型、排放方式、排放量或影响情况、受纳水体环境质量现状、水环境保护目标等综合确定,水污染影响型建设项目评价等级判定依据见表8-9。根据工程分析,本项目的等级判定参数见8-10,判定结果为三级B。

表 8-9 水污染影响型建设项目评价等级判定依据

	判定依据				
评价等级	排放方式	废水排放量(Q/m³/d) 水污染物当量数 W/(无量纲)			
一级	直接排放	Q≥20000 或 W≥600000			
二级	直接排放	其他			
三级 A	直接排放	Q<200 且 W<6000			
三级 B	间接排放				

表8-10 本项目的等级判定结果

排放方式		间接排放
水环境保护目	是否涉及保护目标	否
标	保护目标	/
等级判定结果		三级B

(2) 水污染控制措施有效性分析

三级化粪池是化粪池的一种。由一级池中部通过管道上弯转入下一级池中进行二次净化,再由二次净化后的粪水再导入下一级再次净化,这样经过三次净化后就已全部化尽为水,方可流入下水道引至污水处理厂。

新鲜粪便由进粪口进入第一池,池内粪便开始发酵分解、因比重不同粪液可自然分为三层,上层为糊状粪皮,下层为块状或颗状粪渣,中层为比较澄清的粪液。在上层粪皮和下层粪渣中含细菌和寄生虫卵最多,中层含虫卵最少,初步发酵的中层粪液经过粪管溢流至第二池,而将大部分未经充分发酵的粪皮和粪渣阻留在第一池内继续发酵。流入第二池的粪液进一步发酵分解,虫卵继续下沉,病原体逐渐死亡,粪液得到进一步无害化,产生的粪皮和粪厚度比第一池显著减少。流入第三池的粪液一般已经腐熟,其中病菌和寄生虫卵已基本杀灭。第三池功能主要起储存已基本无害化的粪液作用。

(3) 依托污水处理设施可行性分析

本项目位于江海污水处理厂纳污范围,纳污范围图见附图 10。

江海污水处理厂总占地面积 199.1 亩,远期总规模为处理城市生活污水 25 万 m3/d,分两期建设,首期工程占地面积 67.5 亩,江海污水处理厂首期设计规模为 8×10⁴m³/d,第一阶段实施规模为 5×10⁴m³/d,建于 2009 年,其环评批复江环,江环技【2008】144 号,于 2010 年完成首期一期工程(25000m/d)验收: 江环审【[2010】93 号,经江门市环境保护局核发《江门市排放污染物许可证》编号: 江环证第 300932号,于 2011 年完成首期二期工程(25000m³/d)验收: 江环监【2011】95 号;

进第二阶段: 2012 年污水厂进行了技术改扩建增加 3×104m³/d MBR 处理系统, 扩建后设计总规模达到 8×10⁴m³/d, 其环评批复江环审【2012】532 号,于 2013 年完成验收: 江环验【2013】37 号。

江海污水处理厂首期设计规模 8×10⁴m³/d, 其中第一阶段 5×10⁴m³/d, 采用顶处理+氧化沟+二沉池+紫外消毒工艺,于2010年9月投入正式运行第二阶段 3×104m³/d,采用预处理+MBR-紫外消毒工艺,于2013年9月正式投入运行服务范围为东海路以东、五邑路以南、高速公路以北、龙溪路以西,以及信宜玻璃厂地块,合共1147平方公里。目前截污管网已覆盖本项目所在区域,在管网接驳衔接性上具备可行性。本项目生活污水水量为1.26m³/d,占江海污水处理厂处理量的0.0015%。生活废水排入三级化粪池处理,出水水质符合江海污水处理厂进水水质要求。因此从水质分析,江海污水处理厂能够接纳本项目的生活污水。

(4) 小结

生活污水排水量为96m³/a。该生活污水经化粪池预处理后,达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中第二时段三级标准和江海污水处理厂进水标准较严者,然后排入江海污水处理厂处理。生活污水达标排放对周边水环境影响不大。

①废水类别、污染物及污染治理设施信息表

表 8-11 废水类别、污染物及污染治理设施信息表

					污染	杂治理设	施		排放 口设	
序 号	废水 类别	污染物 种类	排放 去向	排放规 律	污染 治理 说 编号	污染 治理施名称	污染 治理 近 工 艺	排放口编 号	置符要求	排放口 类型

1	生活污水	CODcr NH ₃ -N	进城污处厂	放前量卷且规但属冲型放排期流不定无律不于击排放	1	生污处系	化粪池	DW001	☑是□否	☑企业总排 ☑雨水排放 □清净下水排 放 □温排水排放 □温排水排放 □车间或施排放 □
---	------	-----------------------------	-------	-------------------------	---	------	-----	-------	------	---

②废水排放口基本情况表

表 8-12 废水排放口基本情况表

			* - //-	C/ J + J /4/ 4		11470				
		排放口地				间	受纳污水处理厂信息			
序号	排放口 编号	经度	纬度	废水排 放量/ (万 t/a)	排放去向	排放规律	歇排放时段	名称	污染 物种 类	国家或地 方污染放 排放浓度 限值 /(mg/L)
1 DW00	DW001	E113 153033	N22 554517	0.0096	进入 城市 污水	连续排放,	,	江海 污水	CODer	40
	DW001	DW001 E113.153933 N22		0.0090	处理 上		,	处理 厂	NH ₃ -N	5

③废水污染物排放执行标准表

表 8-13 水污染物排放执行标准表

	次 0 10 为(1) 从(1) 从(1) (1) (1) (1)									
序号	排放口编号	污染物种类	国家或地方污染物排放标准及其他按规定商 定的排放协议							
, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		名称	浓度限值/(mg/L)						
1		CODer	江海污水处理厂进 水许可证排放标准 和《水污染物排放	220						
2	DW001	NH ₃ -N	限值》 (DB44/26-2001) 第二时段三级标准 的较严者	24						

④废水污染物排放信息表

表 8-14 废水污染物排放信息表

序号	排放口编号	 污染物种类	排放浓度/	日排放量/	年排放量/(t/a)
11, 2	11-10人口拥与	77条物件关	(mg/L)	(kg/d)	十1 (1/4)

1	DW001	CODer	220	0.07	0.021
2	DW001	NH ₃ -N	15	0.005	0.001
全厂排放口合计			0.021		
土)	11-11人口口口		0.001		

3、声环境影响分析

项目各生产设备在运行时会产生一定的机械噪声,源强在65~90dB(A)之间。 企业拟采取以下噪声放置措施:

①合理布局,重视总平面布置

尽量将高噪声设备布置在密闭空间内,远离厂界,厂界四周设置绿化带、原料堆放区,利用绿化带及构筑物降低噪声的传播和干扰;利用围墙等建筑物、构筑物来阻隔声波的传播,减少对周围环境的影响。

②防治措施

避免在生产时间打开门窗;通风机进风口和排风口安装消声器,避免噪声通过风道扩散;厂房内墙使用铺覆吸声材料,以进一步削减噪声强度;必要时可在靠近环境敏感点一侧的围墙上设置声屏障,减少噪声对周围环境的影响。

③加强管理

建立设备定期维护、保养的管理制度,以防止设备故障形成的非正常噪声,同时确保环保措施发挥最有效的功能;加强职工环保意识教育,提倡文明生产,严禁抛掷器件,器件、工具等应轻拿轻放,防止人为噪声;汽车进出厂区严禁鸣号,进入厂区低速行使。

④生产时间安排

尽可能地安排在昼间进行生产,若必须在夜间进行生产,应控制夜间生产时间,特别是应停止高噪声设备生产,以减少噪声影响,同时还应减少夜间交通运输活动。 在实行以上措施后,可以大大减轻生产噪声对周围环境的影响,预计项目营运期区域 声环境质量可维持在现有水平上,生产噪声对周围环境影响不大。

4、固体废物影响分析

(1) 一般工业固体废物

废包装料属于一般固体废物, 交给环卫部门统一清运。

废铝渣、金属碎屑、粉尘渣属于一般固体废物,交由废品回收商回收利用。

(2) 办公、生活垃圾

生活垃圾指定地点堆放,每日由环卫部门清理运走,并定期对堆放点进行清洁、消毒。

(3) 废活性炭

废活性炭(废物类别: HW49)、废UV灯管(废物类别: HW29)属于危险废物,不可随意排放、防置和转移,应集中收集后交由具有危险废物处理资质的单位统一处理,并签订危废处理协议。另外,厂内危险废物暂存场所应按《危险废物贮存污染控制标准》(GB18597-2001)的要求设置,即要使用专用储存设施,并将危险废物装入专用容器中,无法装入常用容器的危险废物可用防漏胶袋等盛装,盛装危险废物的容器和胶袋必须贴符合《危险废物贮存污染控制标准》(GB18597-2001)附录A所示的标签等,防置二次污染。

采取上述处理处置措施,本项目产生的固体可达到相应的卫生和环保要求。

5、土壤和地下水环境影响分析

(一) 土壤评价工作分级

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018),污染影响型项目评价等级是根据土壤环境影响评价项目类别、占地规模与敏感程度进行划分,具体如下:

(1) 占地规模

项目占地面积为 0.12 hm^2 ,用地规模为小型 ($\leq 5 \text{ hm}^2$)。

(2) 敏感程度

项目周边为工业厂房和空地,周边无居民区、学校、医院、疗养院、养老院等土壤环境敏感目标,项目所在地无饮用水源保护区,因此,项目所在地的敏感程度为不敏感。

(3) 项目类别

根据《环境影响评价技术导则 土壤环境(试行)》HJ 964—2018 中附录 A: "土壤环境影响评价项目类别",如下表:

表 8-15 土壤环境影响评价项目类别

行业类别			项目类别					
		I类	II类	III类	IV类	项目情况		
制造业	金属 海	有色金 属治 名有 生有 是 人 (生 人 (本 人 (本 人 (本 人) (本 人 (本 人) (本 人 (本 人	有色金属铸造及合金制造;炼铁;球团;烧结炼铜;冷轧压延加工;烧结炼锅;冷轧压延加工;烙铁合金制造;水泥制造;平板玻璃制造;石棉制品;含焙烧的石墨、碳素制品	其他		项目主要 从事铝铸 件的铸造 生产,因Ⅱ 项可目。		

表 8-16 污染影响型敏感程度分级表

敏感程度	判别依据					
敏感	建设项目周边存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的					
较敏感	建设项目周边存在其他土壤环境敏感目标的					
不敏感	其他情况					

表 8-17 污染影响型敏感程度分级表

敏感程度 评价工作等级	I类			II类			III类		
占地规模	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
 较敏感	一级	一级	二级	二级	二级	三级	三级	三级	-
不敏感	一级	二级	二级	二级	二级	三级	三级	_	-

注: "-"表示可不开展土壤环境影响评价工作。

根据土壤环境影响评价项目类别、占地规模与敏感程度划分本项目土壤环境影响评价工作等级为三级,可采用定性描述。

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)表 6 现状监测布点类种与数量,污染影响型三级评价,需在占地范围内设置 3 个表层样点,占地范围外未作要求。根据广东省生态环境厅互动交流网站的答复 "建设项目环评文件编制土壤评价,若建设项目用地范围已全部硬底化,不具备采样监测条件的,可采取拍照证明并在环评文件中体现,不进行厂区用地范围的土壤现状监测"(http://gdee.gd.gov.cn/hdjlpt/detail?pid=187888)。本建设项目用地范围已全部硬底化,不具备采样监测条件,可不进行土壤现状监测。

(4) 评价范围

根据评价等级及本项目所在区域的环境特征,按照环境影响评价技术导则的要求,本项目的现状调查范围为厂区占地全部及厂界周边 50m 范围。

(5) 土壤污染影响

根据项目涉及物料及生产情况,厂区已硬底化建设,污水处理设施、危险化学品仓库、危险废物仓库、生产车间均按要求进行防腐防渗措施。正常生产情况下,不会发生物料、废水下渗造成土壤污染事件。故项目土壤环境影响主要考虑大气沉降。项目排放污染物主要为金属烟尘和有机废气。由于本项目不涉及《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中重金属和无机物、挥发性有机物及半挥发性有机物污染,且项目厂区内已采取地面硬化,正常情况下对土壤影响较小,因此本评价仅进行定性分析。

有机废气排向外环境后部分会在大气环境中扩散、发生光化学反应、被动植物吸收等,部分有机废气后会发生大气沉降从而进入土壤环境,经静电吸附、配位体交换、氢键作用、阳离子键桥、熵值效应等作用与土壤胶体结合,从而被土壤吸附固定。金属粉尘排入外环境后,很难通过自然沉降进入地表,在雨水冲刷的作用下,金属粉尘沉降到地表进而影响周边土壤中微生物的生长,同时使土壤的物理、化学性能发生变化,使土壤环境的恶化。

本项目的废气主要为有机废气和金属烟尘,经有效处理后有机废气排放量仅为0.061t/a,颗粒物的排放量为0.033r/a。根据预测,项目排放的有机废气的最大地面浓

度为 0.033363mg/m³、占标率为 2.78%,颗粒物的最大地面浓度为 0.020018mg/m³、占标率为 2.22%,且项目生产范围内地块地面均水泥进行硬化,因此,在雨天,小部分随着雨水降落回地表进入土壤环境,因此建设项目拟加强对废气的治理和场地的管理,采取的措施如下:

- (1) 厂区内无裸露空地,闲置裸露空地进行绿化或硬化,绿化以种植具有较强 吸附能力的植物为主;
- (2) 对生产车间、危废间和废水处理设施均采用防渗混凝土进行防渗处理,结构厚度不应小于 250mm,混凝土的抗渗等级不应低于 P8;
- (3) 对废气处理设置设置专人专职管理,定期检修和保养,同时做好相关台账记录,确保废气治理设施正常运转,防止废气异常排放导致土壤污染。

经以上措施,项目污染物正常排放对土壤的影响较小。从土壤环境影响的角度,本项目的建设是可行的。

(二) 地下水评价工作分级

根据《建设项目环境影响评价技术导则—地下水环境》(HJ610-2016)附录 A 地下水环境影响评价行业分类表,本项目属于"53、金属铸件"中的报告表类别,对应的是IV类项目,不开展地下水环境影响评价。

6、环境风险分析

(1) 风险调查

物质危险性:本项目的原辅材料、中间产品和产品、污染物等均不涉及《建设项目环境风险评价技术导则》(HJ/T169-2018)附录B、《危险化学品目录(2015版)》、《化学品分类和标签规范(GB 30000.18-2013)》中的危险物质,废活性炭、废UV灯管属于《建设项目环境风险评价技术导则》(HJ/T169-2018)附录B中类别3:健康危险急性毒性物质。生产系统危险性:危废发生泄漏及火灾事故;废气处理设施、废水处理设施发生故障导致事故排放。

(2) 环境风险潜势初判

根据《建设项目环境风险评价技术导则》(HJ/T169-2018)环境风险潜势初判根据危险物质及工艺系统危险性(P)和环境敏感程度(E)判定,建设项目环境风险潜势划分见下表。其中P根据危险物质数量与临界量的比值(Q)和所属行业及生产工艺

特点(M)判定。

表 8-18 建设项目环境风险潜势划分

环境敏感程度	危险物质及工艺系统危险性(P)						
(E)	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害(P4)			
环境高度敏感区 (E1)	IV+	IV	III	III			
环境高度敏感区 (E2)	IV	III	III	II			
环境高度敏感区 (E3)	III	III	II	I			

注: IV+为极高环境风险

危险物质数量与临界量比值

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q_1 , q_2 , ..., q_n ——每种危险物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n ——每种危险物质的临界量, t。

表 8-19 建设项目 Q 值确定表

 序 号	危险物质名称	CAS 号	最大存 在总量 qn/t	临界量 Qn/t	该种危险物 Q值	临界量依据
1	废活性炭	/	0.811	50	0.016	HJ169-2018 附录 B
2	废 UV 灯管里 的汞	7439-97-6	0.001	0.5	0.018	HJ169-2018 附录 B 序号 145
		项目 Q 值∑	0.034			

根据导则本项目 Q 值 Σ =0.034,据导则当 Q<1 时,该项目环境风险潜势为 I。

(3) 评价工作等级划分

评价工作等级划分见下表,项目环境风险潜势为Ⅰ,可开展简单分析。

表 8-20 评价工作等级划分

环境风险潜势	$IV \cup IV^+$	III	II	I
评价工作等级	1		三	简单分析 a

a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防 范措施等方面给出定性的说明。见附录 A。

(4) 环境风险识别

本项目主要为危险废物储存点、废气处理设施存在环境风险,识别如下表所示:

表 8-21 环境风险防范措施危险目标

危险单位	风险类型	环境影响途径	风险防范措施
危险品仓库	泄漏	危险废物发生泄漏,泄漏污染土 壤、地下水,或可能由于恶劣天气	储存液体危险废物必须严 实包装,储存场地硬底化,

危废暂存点		影响,导致雨水渗入等	设置漫坡围堰,储存场地选 择室内或设置遮雨措施
废气收集处理 设施	事故排放	设备故障,或管道损坏,会导致废 气未经有效收集处理直接排放,影 响周边大气环境	加强检修维护,确保废气收 集系统的正常运行
化粪池	泄漏	化粪池发生泄漏,导致生活污水直 接排入污水厂或外环境造成污染	确保化粪池做好硬底化处 理

(5) 环境风险分析

风险事故类型分为火灾、爆炸和泄漏三种。结合本项目的工程特征,潜在的风险 事故可以分为三大类:一是危险物质贮存不当引起泄漏,造成环境污染;二是废气收 集处理设施发生风险事故排放,造成环境污染事故;三是发生火灾或爆炸事故,危险 物质随消防废水进入市政管网或周边水体。

(6) 风险防范措施

- ①事故预防措施:加工、储存、输送危险物料的设备、容器、管道按照相关规范要求设计;落实防火、防爆措施;根据危险物质或污染物质的性质采取相应的防泄漏、溢出措施;制定工艺过程事故自诊断和连锁保护等。
 - ②事故预警措施:火灾报警系统等。
- ③事故应急处置措施(应急措施):按照国家、地方和相关部门要求,建立事故报警、应急监测及通讯系统;终止风险事故的措施,如消防系统、紧急停车系统、中止或减少事故泄放量的措施等;防止事故蔓延和扩大的措施,如危险物料的消除、转移及安全处置,在有毒有害物质泄漏风险较大的区域作地面防渗处理、设置安全距离,切断危险物或污染物传入外环境的途径、及设置暂存设施等。
- ④事故终止后的处理措施:对事故过程中产生的有毒有害物质进行妥善处理。根据危险化学品应急处置措施对泄漏物进行处置。消防用水仅为雾化后对燃烧的容器或燃烧区域附近的物质容器做表面降温处理,绝大部分受热蒸发,极少量消防水将积聚于车间或仓库内,建设单位对此部分积水需用砂土、石灰粉等惰性物质吸收后妥善处置。事故时,将关闭厂区雨水和废水管道出口,尽量将所有废水废液截流于厂内的储水槽内,防止事故废水进入外环境。待事故结束后,对废水进行检测分析,根据水质情况拟定相应处理、处置措施,委托有资质的单位进行回收处理。

(7) 分析结论

本项目环境风险潜势为 I , 环境风险等级低于三级, 在做好上述各项防范措施后, 项目生产过程的环境风险是可控的。

表 8-22 项目环境风险简单分析内容表

建设项目名称	江门市江海区新启成五金制品有限公司年产铝铸件70万件建设项目					
建设地点	(广东)省 (江门)市		(江海)区	() 县	() 园区	
地理坐标	经度	纬度 22.554455°				
	危险物	勿质		分布		
工女危险物灰灰为师	废活性炭、房	爱UV 灯管	危废间			
	环境影响	危害后果				
环境影响途径及危害	大學	引起周围大气环境暂时性超标				
后果(大气、地表水、 地下水等)	地下	污染地下水质				
	地表	污染地表水质				
风险防范措施要求	加强可燃原辅料管理制度,设置专用场地、专人管理,并做好出入库记录。配备齐全的消防装置,并定期检查电路,加强职工安全生产教育;危险废物暂存间设置在生产车间内、地面硬化处理、并在周围设置围堰,做到防淋、防渗、防泄漏,防止泄漏下渗污染地下水;					

填表说明(列出项目相关信息及评价说明):

7、环保投资估算

项目投资 100 万元, 其中环保投资 20 万元, 约占总投资的 20%, 环保投资估见下表。

表 8-23 环保投资估算表

序号	项目	防治措施	费用估算(万元)
1	废水	化粪池	3
	pis to	水喷淋塔+UV 光解+活性炭吸附	
2	废气	水喷淋塔	3
3	噪声处理	隔音和减振	1
4	固废	固废 一般固体废物储存场所、危废暂存间	
		20	

8、项目三同时

项目"三同时"环保设施验收情况详见下表。

		表 8-2	24 项目"三同时"环保设施验收-	一览表
序号		污染类别	验收内容	要求
1	工程内容		主体工程、配套工程设备、 生产线、产品方案	与本报告内容相符合
2	废水		生活污水经三级化粪池预处理后排 入市政管网	广东省《水污染排放限值》 (DB44/26-2001)第二时段 三级标准和江海污水处理厂 进水标准较严者
3		废气	熔化、压铸颗粒物、VOCs 经集气罩 收集后由"水喷淋除尘装置+UV光 解+活性炭吸附"装置处理达标后由 25米排气筒排放 抛光粉尘经集气罩收集后由"水帘除 尘装置"装置处理达标后由 25米排 气筒排放	放监控点浓度限值 《工业炉窑大气污染物排放标准》(GB9078-1996)表 2 金属熔化炉二级标准及表 3 无组织排放烟(粉)尘最高 允许浓度限值 广东省《大气污染物排放限 值》(DB44/27-2001)第二 时段无组织排放监控浓度限
4			合理布局、利用墙体遮挡、采用基础 减震等措施	(GB12348-2008)的3类声 环境功能区标准
	办公、生活垃圾、废 包装材料		交由当地环卫部	部门处理 ————————————————————————————————————
5	度铝渣、金属碎屑、 粉尘渣		交由一般固废处理单	单位回收处理
	及初	脱模剂桶	交原供应商回	收利用
		废活性炭、废 UV 灯管	集中收集后定期交给有废物处	置资质的单位进行处理
6		总量控制指标	以环评批复	为准
	0 17	7.1安小人河门丁宁!	,	

9、环境监测计划

环境监测是污染防治的重要工作内容,是实现环保措施达到预期效果的有效保证,为各级环保部门做好环境监督管理,以便客观地评估其项目营运时对环境的影响,确认其环保措施的有效性或改进的必要性。

表8-25 环境监测计划表

<u>监测点位</u> <u>监测指标</u> <u>监测频次</u> 执行排放标准
--

	颗粒物	半年一次	《工业炉窑大气污染物排放标准》 (GB9078-1996)表3无组织排放烟(粉)尘最高允许浓度限值和广东省《大气污染物排放限值》(DB44/27-2001)第二时段中无组织排放监		
7人日迈州			控浓度限值中较严者		
	VOCs 半年一次		广东省《家具制造行业挥发性有机物排放标准》 (DB44/814-2010)表 2: VOCs 无组织排放监控		
	, 555		点浓度限值		
III bee hale		半年一次	《工业炉窑大气污染物排放标准》		
	颗粒物		(GB9078-1996) 表 2 金属熔化炉二级标准		
排气筒	VOCs	半年一次	广东省《家具制造行业挥发性有机化合物排放标		
DA001			准》(DB44 814-2010)第Ⅱ时段排气筒 VOCs		
			排放限值		
排气筒	颗粒物	半年一次	广东省《大气污染物排放限值》(DB44/27-2001)		
DA002	大块不过 7岁 	十十一次	第二时段无组织排放监控浓度限值		
上 江江北州	BOD5		广东省地方标准《水污染物排放限值》(DB		
生活污水排	CODCr、氨氮、	每季度一次,	44/26-2001) 第二时段三级标准和江海污水处理		
放口	SS	全年共4次	厂进水标准的较严者		
西日沙里	等效连续 A 声	1 岁/禾庇	《工业企业厂界环境噪声排放标准》		
项目边界	级	1 次/季度	(GB12348-2008) 3 类功能区排放限值		
1					

九、建设项目拟采取的防治措施及预期治理效果

内容 类型	排放源	污染物名称	防治措施	预期治理效果
X.E.	熔化工序	烟尘	经集气罩收集后,经 过水喷淋除尘装置 +UV 光解+活性炭吸 附装置处理达标后由 25 米排气筒高空排 放	烟尘有组织排放浓度可达到《工业炉窑大气污染物排放标准》(GB9078-1996)表2金属熔化炉二级标准;无组织排放的颗粒物达到《工业炉窑大气污染物排放标准》(GB9078-1996)表3其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准
大气污染物	压铸工序	VOCs		VOCs 排放可达到广东省《家具制造行业挥发性有机化合物排放标准》(DB44 814-2010)表 1 排气筒 VOCs 排放限值中第 II 时段二级标准及表 2 无组织排放监控点浓度限值要求
	抛光工序	粉尘	经集气罩收集后,经 过水喷淋除尘装置处 理达标后由 25 米排 气筒高空排放	有组织抛光金属粉尘达到广东省《大气污染物排放限值》(DB4427-2001)第二时段二级标准要求;无组织排放的颗粒物达到《工业炉窑大气污染物排放标准》(GB9078-1996)表3其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准

水污染物	生活污水	COD _{cr} BOD ₅ SS NH ₃ -N	化粪池预处理	广东省地方标准《水污染物排放限值》 (DB44/26-2001)中第二时段三级标准和江海污水处理厂进水标准较严者
		废铝渣		
	. 机田 休 磁 栅	金属碎屑	交由废品商回收	
固	一般固体废物	粉尘渣		
体 废		废包装材料	交由环卫部门统一清 运	符合卫生和环保要求
物	办公生活	生活垃圾	环卫部门统一清运	
	危险废物	废活性炭、 废 UV 灯管	集中收集,交给具有 危险废物处理资质的 单位统一处理,并签 订危险废物协议	
噪	经过隔声、	减振等措施治	7理,再经自然衰减后,	项目边界噪声可达到《工
声	业企业厂界环	下境噪声排放杨	示准》(GB12348-2008))中3类标准的要求。
其 他				

主要生态影响(不够时可附另页)

按上述措施对各种污染物进行有效的治理,并搞好项目周围环境的绿化、美化,可 降低其对周围生态环境的影响,项目建成后对附近的生态要素空气、水体、土壤和植被 等无明显影响。

十、结论与建议

一、项目概况

江门市江海区新启成五金制品有限公司拟在江门市江海区龙溪路 295 号 4 幢首层自编 01 建设年产铝铸件 70 万件建设项目。项目投资 100 万元,其中环保投资 20 万元。该项目占地面积 1200m²,建筑面积 1020m²。员工人数 10 人,生产天数为 300 天/年,每天工作 8 小时。项目不设置住宿和食堂。

二、项目建设的环境可行性

1、与产业政策的相符性分析

项目所使用的原材料、生产设备及生产工艺均不属于《市场准入负面清单(2019年版)》、《产业结构调整指导目录(2019年本)》、《关于发布珠江三角洲地区产业结构调整优化和产业导向目录的通知》(粤经函[2011]891号)中禁止准入类和限制准入类,不属于《广东省进一步加强淘汰落后产能工作实施方案》中重点淘汰类和重点整治类。因此,本项目符合产业政策。

2、项目选址合法性分析

根据项目土地证(附件3),粤(2017)江门市不动产权第1000179号,用途为工业用地;并根据《江门市城市总体规划图(2011-2020)》,项目位置属于二类工业用地,符合江门市城市总体规划要求。因此项目建设符合当地用地规划。

项目生活污水纳污水体为麻园河,执行《地表水环境质量标准》(GB3838-2002) V类标准;大气环境属于《环境空气质量标准》(GB3095-2012)及其修改单中的二类 环境空气质量功能区;声环境属《声环境质量标准》(GB3096-2008)3 类区。项目所 在位置不属于禁排区。

三、建设项目周围环境质量现状评价

1、环境空气质量现状

项目所在区域为二类环境空气质量功能区,执行《环境空气质量标准》 (GB3095-2012)及其修改单的二级标准。

根据《2019年江门市环境质量状况(公报)》,江海区 SO₂、NO₂、PM₁₀、PM_{2.5}、CO 达到《环境空气质量标准》(GB3095-2012)及其修改单二级标准,O₃ 未能达到《环境空气质量标准》(GB3095-2012)及其修改单二级标准要求,表明项目所在区域江海

区为环境空气质量不达标区。

2、地表水环境质量现状

项目所在区域纳污水体麻园河,BOD₅、氨氮、总磷超标,水质不符合《地表水环境质量标准(GB3838-2002)》 V 类标准。

3、地下水环境质量现状

根据《广东省地下水功能区划》(2009),项目所在区域属于珠江三角洲江门新会不宜开发区(代码 H074407003U01),现状水质类别为V类,其中矿化度、总硬度、 NH_4^+ 、Fe 超标。项目地下水水质保护级别为《地下水水质量标准》(GB/T14848-93) 中的V类。

4、声环境质量现状

根据《江门市声环境功能区划》中的附图 6,项目所在地为 3 类声环境功能区,项目厂界声环境执行国家《声环境质量标准》(GB3096-2008)中的 3 类标准,昼间噪声值标准为 60dB(A),夜间噪声值标准为 50dB(A)。根据《2019 年江门市环境质量状况(公报)》,江门市区昼间区域环境噪声等效声级平均值 56.98 分贝,优于国家声环境功能区 2 类区(居住、商业、工业混杂)昼间标准;道路交通干线两侧昼间噪声质量处于较好水平,等效声级为 69.94 分贝,符合国家声环境功能区 4 类区昼间标准(城市交通干线两侧区域)。综上所述,项目所在区域符合《声环境质量标准》(GB3096-2008)中的 3 类标准要求,声环境质量现状较好。

5、生态环境

该项目地块处于人类活动频繁区,无原始植被生长和珍贵野生动物活动,区域生态 系统敏感程度较低。

四、项目营运期间环境影响评价结论

1、大气环境影响分析评价结论

项目外排有机废气满足《家具制造行业挥发性有机化合物排放标准》(DB44 814-2010)表 1 排气筒 VOCs 排放限值中第 II 时段二级标准及表 2 无组织排放监控点浓度限值的要求;有组织熔化烟尘满足《工业炉窑大气污染物排放标准》(GB9078-1996)表 2 金属熔化炉二级标准;有组织抛光粉尘满足广东省地方标准《大气污染物排放限值》

(DB4427-2001) 第二时段二级标准的要求,无组织排放的颗粒物满足《工业炉窑大气污染物排放标准》(GB9078-1996)表 3 其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准,预计对周围环境影响不大。

2、水环境影响分析评价结论

生活污水排水量为 96m³/a。该生活污水经三级化粪池预处理后,达到广东省《水污染排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂进水标准较严者,然后排入江海污水处理厂处理。生活污水达标排放对周边水环境影响不大。

3、声环境影响分析评价结论

噪声经厂房墙壁的阻挡以及自然衰减后会有所减弱,厂界噪声能达到《工业企业厂界环境噪声排放标准(GB12348-2008)》3 类标准:昼间≤65dB(A)、夜间≤55dB(A)。为减少噪声对环境的污染,因此,道路两旁和厂界内应设置绿化带,利用绿化带及构筑物降低噪声的传播和干扰。

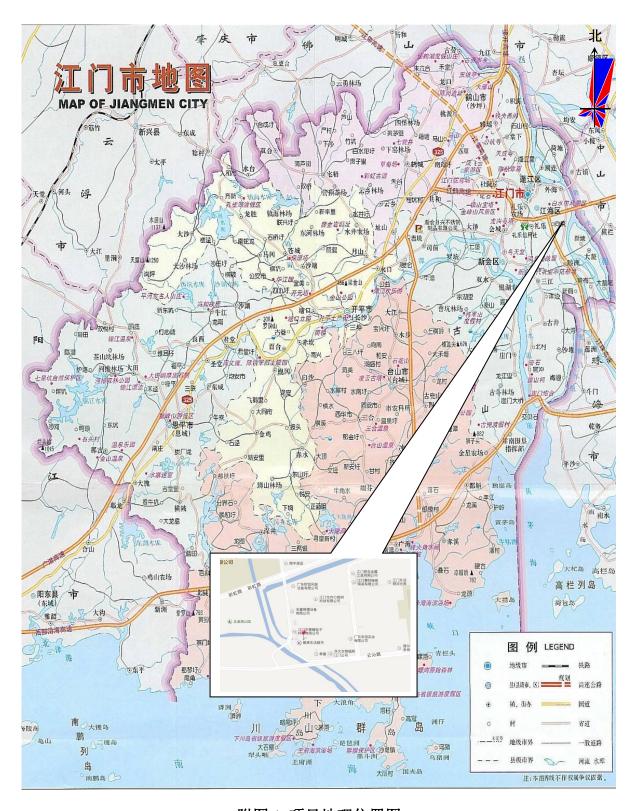
4、固体废物环境影响分析评价结论

本项目生活垃圾和废包装料由环卫部门定期清运。废铝渣、金属碎屑、粉尘渣交由废品回收商回收处理。废活性炭和废 UV 灯管交由有相关处理资质的单位处理。采取上述处理处置措施,本项目产生的固体废物可达到相应的卫生和环保要求。

六、环境保护对策建议

- 1、建设单位应按照本环评的要求设置生产废气治理措施,做好废气的治理和排放,确保有组织抛光粉尘废气符合广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准; VOCs符合《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表1排气筒 VOCs排放限值中第 II 时段二级标准及表2 无组织排放监控点浓度限值要求,熔化烟尘满足《工业炉窑大气污染物排放标准》(GB9078-1996)表2 金属熔化炉二级标准要求,无组织排放的颗粒物能满足《工业炉窑大气污染物排放标准》(GB9078-1996)表3 其他窑炉无组织排放烟(粉)尘最高允许浓度和广东省《大气污染物排放限值》(DB4427-2001)第二时段无组织排放浓度限值中较严者标准的要求。
- 2、合理布局,重视总平面布置。加强运营期的环境管理,并积极落实防治噪声污染措施,确保项目厂界噪声达到《工业企业厂界环境噪声排放标准(GB12348-2008)》

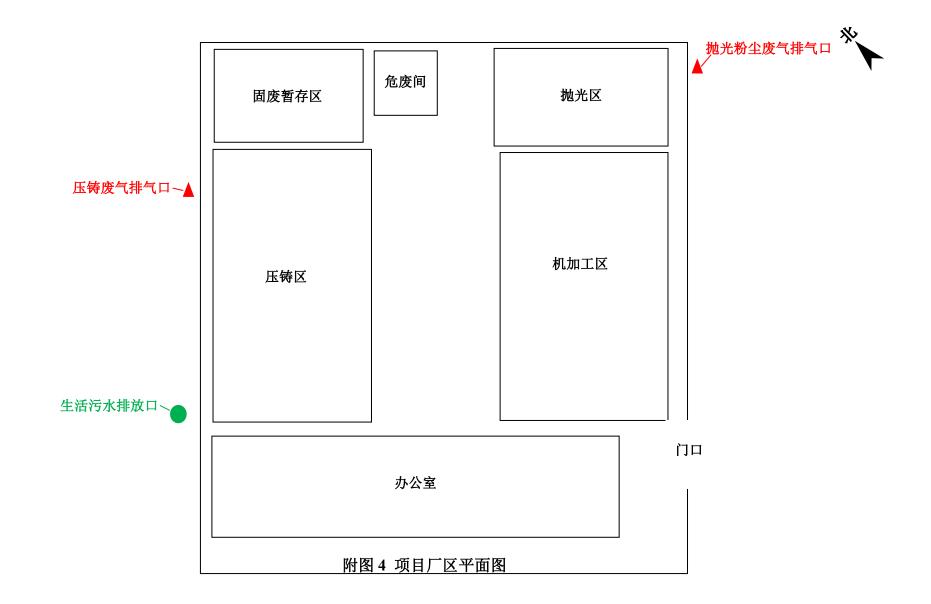
- 3 类标准: 昼间≤65dB(A)、夜间≤55dB(A)。
- 3、落实生活污水治理设施,确保生活污水达到广东省《水污染排放限值》 (DB44/26-2001)第二时段三级标准和江海污水处理厂进水标准较严者,然后排入江海污水处理厂处理。
- 4、对项目产生的工业固废有利用价值的回收利用,生活垃圾按指定地点堆放,每 日由环卫部门清理运走,并对堆放点进行定期的清洁消毒。
- 5、对经常性接触高噪声源的劳动人员、值班人员或检修人员应加强个体防护,配 戴防噪耳塞、耳罩等劳保用品,保护员工身体健康不受影响。
- 6、加强生产管理,提高员工生产操作的规范性,以减少不必要的物料浪费现象从 而减少污染物的产生量;并积极探索新工艺,在保证产品质量的前提下,进一步减少产 品的能耗物耗。
- 7、搞好区内绿化、美化,对生态环境进行修复;合理规划道路及建筑布局,以利于空气流通与大气污染物的扩散。
- 8、增强环保意识,建立一套环境保护管理制度,加强防火安全措施及生产管理, 避免火灾事故的发生。
 - 9、严格按照相关的消防规范合理布置厂区,设置有效的安全设施与防护距离。
- 10、加强事故预防措施和事故应急处理处置的技能,懂得紧急救援的知识。"预防为主、安全第一"是减少污染事故发生、减少污染事故损害的重要保障。严禁在车间使用明火,如吸烟。在车间内根据消防要求安装一定数量的灭火器材。制定厂内的应急计划、定期进行安全环保宣传教育以及紧急事故模拟演习,配备必要的应急措施。
- 11、关心并积极听取可能受项目环境影响的附近居民或企业员工的反映,定期向项目最高管理者和当地环保部门汇报项目环境保护工作的情况,同时接受当地环境保护部门的监督和管理。遵守有关环境法律、法规,树立良好的企业形象,实现经济效益与社会效益。
- 12、严格按报批的生产范围、生产工艺和生产规模进行建设和生产。今后若企业的 生产工艺发生变化或生产规模扩大、生产技术更新改造,都必须重新进行环境影响评价, 并征得环保部门审批同意后方可实施。

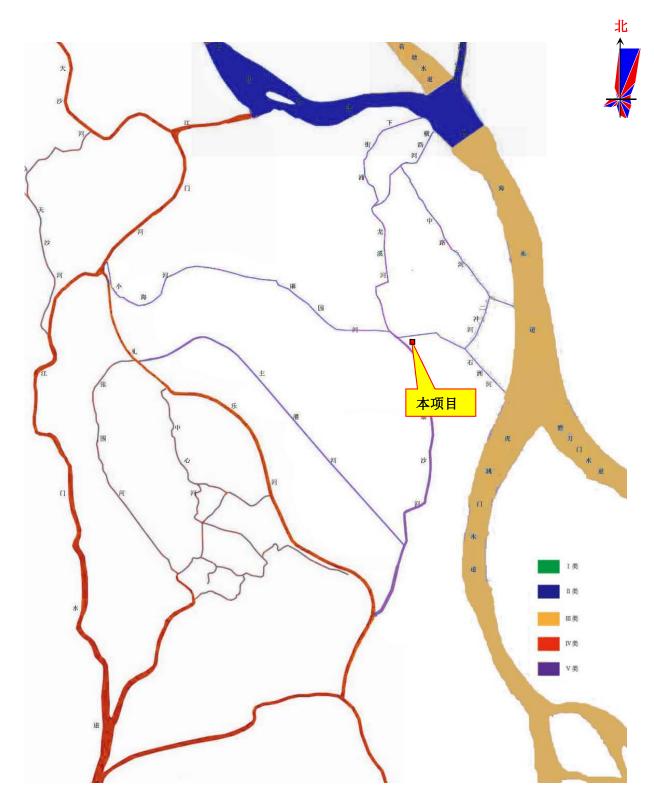

七、结论

综上所述,江门市江海区新启成五金制品有限公司年产品铸件 70 万件建设项目符合产业政策要求,选址符合地方环境规划和城市总体规划要求。

建设单位必须严格遵守"三同时"的管理规定,完成各项报建手续,确实保证本报告提出的各项环保措施的落实,并尽一切可能确保本项目所在区域的环境质量不因本项目的建设而受到不良影响,真正实现环境保护与经济建设的协调发展。项目建成后,须经过环境保护主管部门验收合格后方可投入使用,在投入使用后,应加强对设备的维修保养,确保环保设施的正常运转。在达到本报告所提出的各项要求后,该项目对周围环境将不会产生明显的影响

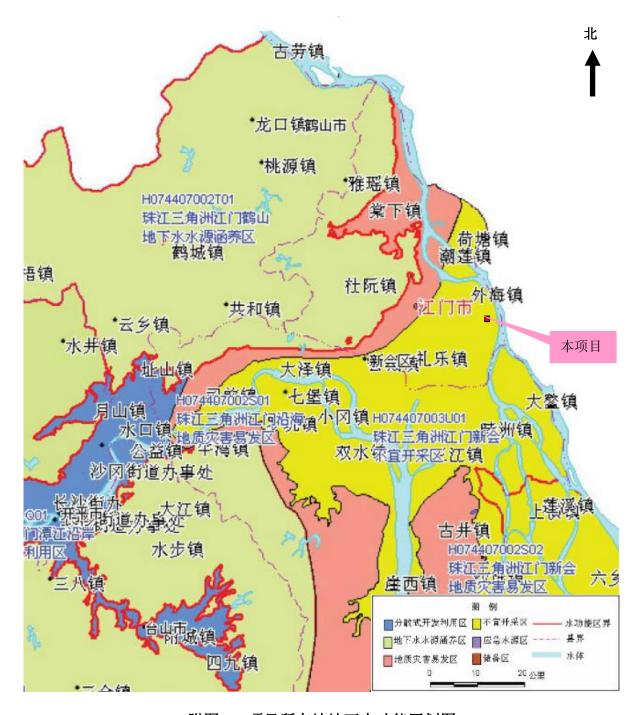
从环保的角度看,该项目的建设是可行的。

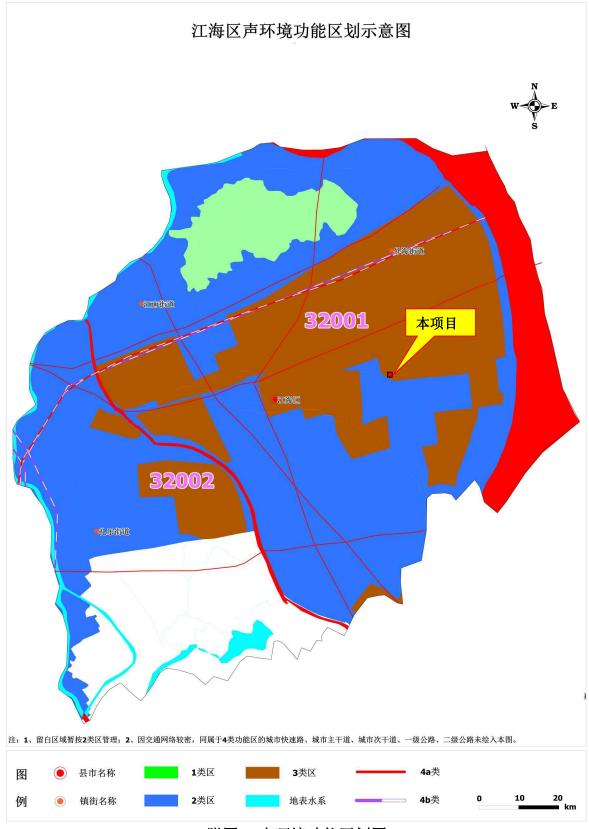

附图 1 项目地理位置图

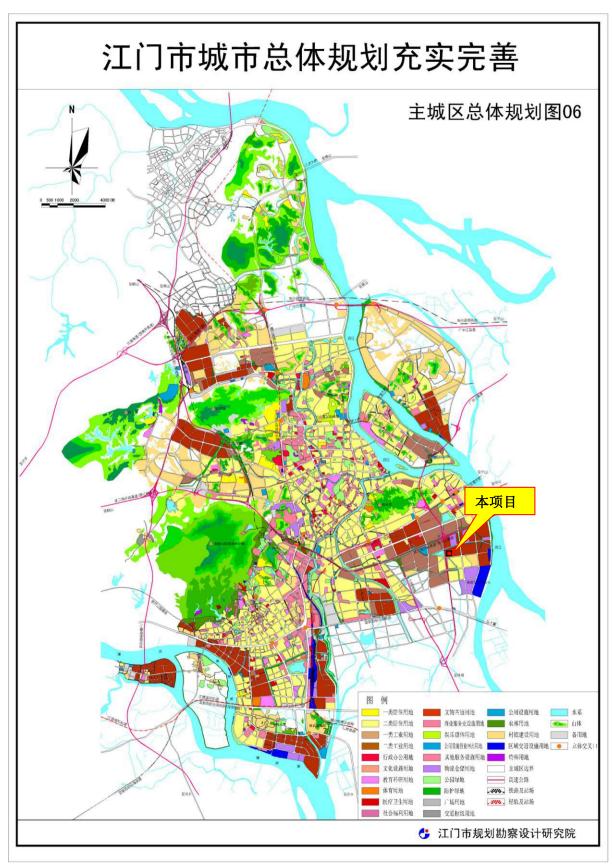


附图 2 项目四至图

附图 3 项目敏感点分布图



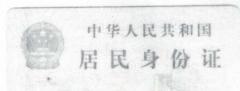

附图 5 项目所在地水环境功能区划图


附图 6 项目所在地环境空气质量功能区划图

附图 7 项目所在地地下水功能区划图

附图 8 声环境功能区划图

附图9 江门市城市总体规划图



附图10 江海污水处理厂纳污范围图

附件2 法人身份证

签发机关 信信市原德区公安局 有效期限 2016.02.24~2036.02.24

附件3 国土证

附件4 环境质量现状引用资料

证 党政机关 www.jiangmen.gov.cn/bmpd/jmssthjj/hjzl/ndhjzkgb/content/post_2007240.html# 🤮 江门市政府门户网站 2020年3月24日 星期二 A 繁體 📐 无障碍 💣 政务微博 🤏 政务微信 💋 空气质量

江门市生态环境局

Q 智能搜索

网站首页	机构概况	政务公开	政务服务	环境质量	派出分局	专题专栏

年度环境状况公报

↑ 当的位置,首页 > 部门频道 > 江门市生态环境局 > 环境质量 > 年度环境状况公报

2019年江门市环境质量状况(公报)

发布时间: 2020-03-12 17:47:33 字体【大中小】 来源:本网 田 四 香 台 八 回

、空气质量

一、空气项型 (一)国家直性温姆站点空气质量 2019年度,细颗粒物(PM_{2.5})年平均浓度为27微克/立方米,同比下降6.9%;可吸入颗粒物(PM₁₀)年均浓度为49微克/立方米,同比下降 3.9%;二氧化磷年均浓度为微克·过方米。同比下降12.5%;二氧化煮在均浓度为22微克/立方米,同比持平;一氧化磷日均值第95百分位数浓度 (CO-95per)为1.3毫克/立方米。同比上升18.2%;具氧日最大8.4%时平均第90百分位数浓度(O₅₋₈₆-90per)为198微克/立方米,同比上升17.9%;除

(63天),中度污染占3.8%(14天),重度污染占1.8%(7天),无严重污染天气,详见图1。首要污染物为俱氧,其作为每日首要污染物的天数比例 为65.6%(良及以上等级天数共计221天),二氧化氦及PM₁₀作为首要污染物的天数比例分别为25.3%、5.4%,详见图2。

(二)各市(区)空气质量

各市(医)空气质量优展天数比例在76.7%(蓬江区)---91.2%(恩平市)之间。以空气综合质量指数排名,台山市位列第一位,其次分别是开平、恩平、新会、蓬江、鹤山、江海;除台山外,蓬江、江海、新会、开平、鹤山和恩平空气综合质量指数同比均有所上升。以空气质量次蓄程度排名,台山市位列第一,空气综合质量指数同比下降1.8%,详见表1。

证 党政机关 www.jiangmen.gov.cn/bmpd/jmssthjj/hjzl/ndhjzkgb/content/post_2007240.html#

(三)城市降水

江门市区降水pH年平均值为5.33,小于5.6的酸兩临界值,属于酸兩区。酸兩频率为49.7%,降水pH浓度值范围在4.10~7.20之间。

二、水环境质量 (一)城市集中式饮用水源

(17%)25年120/07/38 江门市区了城市集中式饮用水源地水质优良,保持稳定,水质达标率100%。8个县级以上集中式饮用水源地(包括台山北峰山水库群 的塘田水库、板潭水库、石花山水库,开平的大沙河水库、龙山水库,鶴山的西江坡山,恩平的锦江水库、江南干渠等)水质优良,达标率

西江干流、西海水道和省控跨地级市界河流交接断面水质优良,符合II~II类水质标准。江门河水质优良至轻度污染,水质类别为II~IV 类,达到水环境功能区要求:潭汀干流上游水质优良,中游及下游银洲湖段水质良至轻度污染,潭汀入海口水质优良。

列入广东省次污染防治行动计划的9个地象水考核监测师面分别为:西江下东和市州、西江虎和门水道,台域问公义,潭江义兴、新美 牛湾及苍山渡口、江门河上浅口。2019年度除牛湾断面未达皿类水质要求外,其余8个监测断面水质均达标,年度水质优良率为88.9%,且 无劣V类断面。

(三)跨市河流

共有跨地级市河流2条,设置西江干流下东、磨刀门水道六沙和布洲等三个跨市河流交接监测断面。2019年度全市跨市河流断面水质达 标率为100%,同比上升8.3个百分点。

三、声环境原量 三、声环境原量 江门市区星间区域环境噪声等效声级平均值56.98分贝,优于国家声环境功能区2类区(居住、商业、工业混杂)星间标准;道路交通干 线两侧星间噪声质量处于较好水平,等效声级为69.94分贝,符合国家声环境功能区4类区星间标准(城市交通干线两侧区域)。

四、辐射环境质量

全市辐射环境质量总体良好,境内核设施、核技术利用项目周围环境电离辐射水平总体未见异常。电磁辐射环境水平总体保持稳定,电磁辐射跃均设施周围敏感点环境综合电场强度以及输变电设施周围环境敏感点工频电场强度和磁感应强度均低于《电磁环境控制限值》

(GB8702-2014)所规定的限值。 对西海水道量边、新沙,台山市六库联网(城北水厂)和恩平市锦江水库等4个饮用水源地开展两期水质辐射环境监测,监测结果显示, 4个饮用水源地水质放射性水平未见异常,均处于本底水平。

表1 2019年度各市(区)空气质量状况

区域	二氧化	二氧化氮	PM ₁₀	一氧化碳	臭氧	PM _{2.5}	优良天 数比例 (%)	综合指数	综合指数排名	综合指数 同比变化 率	空气质量同 比 变化程度排 名
蓬江区	8	34	52	1.2	198	27	76.7	4.03	5	2.5	3
江海区	11	37	57	1.2	182	30	81.0	4.21	7	19.6	7
新会区	7	29	48	1.4	178	26	84.1	3.73	4	3.6	4
台山市	9	22	41	1.3	152	26	90.7	3.30	1	-1.8	1
开平市	10	23	48	1.3	172	25	87.4	3.55	2	1.7	2
鹤山市	11	33	51	1.4	188	31	80.3	4.15	6	4.3	5
恩平市	12	25	51	1.7	156	24	91.2	3.64	3	6.1	6
年均二级标 准 GB3095-20 12	60	40	70	4.0	160	35	81	-	+1		6)

附件5 现状监测资料

广东新创华科环保股份有限公司

检测报告

(XCDE18050120)

项目名称: <u>江海区马鬃沙河黑臭水体综合整治工程 环评项目</u>
委托单位: <u>江门市泰邦环保有限公司</u>
检测类别: <u>委托检测</u>

SINOATION 报告编号: XCDE18050120

报告日期: 2018年05月17日

SHOPTION

受江门市泰邦环保有限公司委托对江海区马鬃沙河黑臭水体综合整治工程项目周边环境现状进行 二、检测内容

2.1 地表水检测

采样点位: W1 麻园河和龙溪河汇入口下游约 500 米 (东经 113°09'22.08", 北纬 22°33'07.48") W2 麻园河和龙溪河汇入口下游约 1500 米 (东经 113°09'43.09", 北纬 22°32'27.67")

检测项目:水温、pH 值、溶解氧、化学需氧量、五日生化需氧量、悬浮物、氦氮、总磷、挥发酚、 石油类、阴离子表面活性剂

采样时间: 2018 年 05 月 08 日~2018 年 05 月 10 日

采样频次:每个点连续采样3天,每天采样1次

三、检测结果

3.1 地表水检测

表1

项目	757 444 PT 469		平位: mg/L(pH 组及注:
坝日	采样日期	W1	W2	W3
水温 (℃)	2018.05.08	25.2	24,9	24.5
	2018.05.09	25.5	25.9	25.3
The second second	2018.05.10	26.2	26.3	26.
рН值	2018.05.08	7.12	7.26	7.14
	2018.05.09	7.06	7.13	7.03
On THE	2018.05.10	7.24	7.06	7.27
溶解氣	2018.05.08	2.63	3.06	3.31
	2018.05.09	2.88	3.12	3.26
	2018.05.10	2.89	3.14	3.21
5W	2018.05.08	32	28	26
化学需氧量	2018.05.09	24	25	23
_m10/411	2018.05.10	36	24	31
4 54	2018.05.08	10.9	8.4	8.1
五日生化需氧量	2018.05.09	6.8	9.2	6.6
SWED	2018.05.10	12.3	7.2	9.1

未经本公司书面同意,不得部分复制本检测报告! 广东新创华科环保股份有限公司 :莞市道滘镇万道路 2 号华科城(创新岛产业孵化园内 2-2 55、 由话: (26-720) 广东新创华科环保股份有限公司 东莞市道滘镇万道路 2 号华科城(创新岛产业孵化园内 2-3 栋) 邮政编码 523170 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330 - 1 2662 SMG (2英: ()

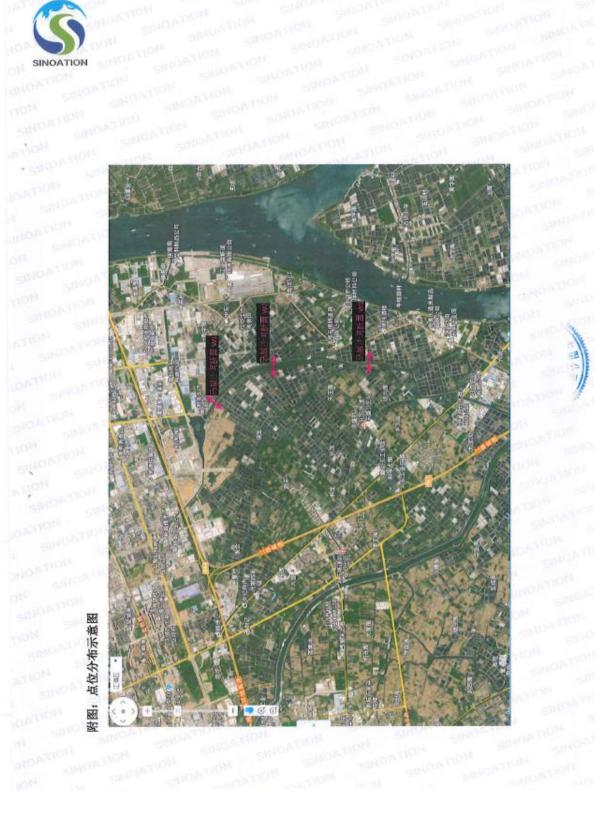
报告日期: 2018年05月17日

第3页共4页

上表

1 W2	W3
7 44	
44	85
50	72
2 39	63
7 6.22	6.78
2 6.34	6.53
9 5.92	6.28
5 4.08	4.14
2 4.34	3.39
7 3.33	4.31
0.0003L	0.0003L
0.0003L	0.0003L
0.0003L	0.0003L
2 0.03	0.03
3 0.04	0.01L
1 0.03	0.04
L 0.08	0.05
6 0.07	0.07
L 0.05L	0.08
	2 39 177 6.22 182 6.34 189 5.92 185 4.08 182 4.34 17 3.33 103L 0.0003L 100.0003L

注: L表示检验数值低于方法检出限,以所使用的方法检出限值报出。


用章

四、检测方法	长附表		
附表: 地表水	检测分析方法	SHONEIGH STON	ESPER .
分析项目	方法编号(含年号)	检測标准 (方法) 名称	检出限
水温	GB/T 13195-1991	《水质 水温的测定 温度计或颠倒温度计测定法》	1
pH值	GB/T 6920-1986	《水质 pH 值的测定 玻璃电极法》	1
溶解氧	НЈ 506-2009	《水质 溶解氧的测定 电化学探头法》	1
化学需氧量	НЈ 828-2017	《水质 化学需氧量的测定 重铬酸盐法》	4mg/L
五日生化需氧量 (BOD ₅)	НЈ 505-2009	《水质 五日生化需氧量(BOD ₅)的测定 稀释与接种法》	0.5mg/L
悬浮物	GB/T 11901-1989	《水质 悬浮物的测定 重量法》	4mg/L
愛愛	НЈ 535-2009	《水质 氦氮的侧定 纳氏试剂分光光度法》	0.025mg/L
总磷	GB/T 11893-1989	《水质 总磷的测定 钼酸铵分光光度法》	0.01mg/L
挥发酚	НЈ 503-2009	《水质 挥发酚的测定 4-氨基安替比林分光光度法》	0.0003mg/l
石油类	НЈ 637-2012	《水质 石油类和动植物油类的测定 红外分光光度法》	0.01mg/L
阴离子表面活性剂	GB/T 7494-1987	《水质 阴离子表面活性剂的测定 亚甲蓝分光光度法》	0.05mg/L

SHOPHON

STIDATION

广东新创华科环保股份有限公司

检测报告

(XCDE18040604)

项目名称:励	福(江门)环保科技股份有限公司拆借拆解项目 环评项目	gO.
被测单位:	励福(江门)环保科技股份有限公司	N.
被测单位地址: _	江门市高新西路 191 号	08
检测类别:	委托检测	

报告编制说明

- (1) 本公司保证检测的科学性、公正性和准确性,对检测数据负检测技术责任, 并对委托单位所提供的样品和技术资料保密。
- (2) 对本报告若有疑问,请向质量部查询,来函来电请注明报告编号。
- (3) 本报告涂改无效,无审核、无授权签字人签发视为无效,报告无本公司检验检测专用章、骑缝章及无计量认证章 **M** 视为无效。
- (4) 未经本公司书面批准,不得部分复制本报告。
- (5) 如客户没有特别要求,本公司报告不提供检测结果不确定度。

检测委托受理电话: (86-769) 2662 0520 报告发放查询电话: (86-769) 2662 0520 报告质量投诉电话: (86-769) 2662 0898 检测服务投诉电话: (86-769) 2662 0898 传真: (86-769) 2662 0330

报告日期: 2018年05月09日

第1页共15页

承 担 单 位:广东新创华科环保股份有限公司

报 告 编 写: 刘燕君

复

核:罗利林

宙

核: 数级

效

发: 本芸書

□项目经理 □技术经理 □质量经理

签 发 日 期: 2018.5.9

采 样 人 员: 胡浩明 吴奋尔 张中用 郑 凡 张中用 朱少威 黄远秋

分 析 人 员: 陈思慧 叶子健 何高鹏 刘江华 彭明哲 张劲宏 黎就花 董燕婷 王 平 郑壮校 林泽纯 赖世通

委 托 联 系 人: 严春光 18026839347

委 托 单 位: 江门市泰邦环保有限公司

报告日期: 2018年05月09日

一、检测目的

受江门市泰邦环保有限公司委托对被测单位周边环境现状进行检测

二、检测内容

2.1 地表水检测

采样点位: W1 江门市江海污水处理厂排污口上游 500m(东经 113°07′55.84″, 北纬 22°33′34.14″)

W2 江门市江海污水处理厂排污口(东经 113°08′16.44″,北纬 22°33′27.31″)

W3 江门市江海污水处理厂排污口下游 2000m(东经 113°09′18.66″,北纬 22°32′51.13″)

检测项目:水温、pH 值、化学需氧量、五日生化需氧量、悬浮物、溶解氧、氨氮、石油类、总磷、 六价铬、阴离子表面活性剂、粪大肠菌群、镉

采样时间: 2018年04月25日~2018年04月27日

采样频次:每个点连续采样3天,每天采样2次(涨潮、退潮各1次)

2.2 地下水检测

采样点位: U1 项目位置(东经113°08'43.77", 北纬22°34'14.38")

U2 南山村(东经 113°07′55.52″,北纬 22°34′48.62″)

U3 中东村(东经 113°10′00.22″, 北纬 22°33′02.83″)

检测项目: pH 值、总硬度、挥发酚、高锰酸盐指数、氨氮、氯化物、氟化物、溶解性总固体、硫酸 盐

采样时间: 2018年04月26日

采样频次:每个点连续采样1天,每天采样1次

2.3 环境空气检测

采样点位: G1 本项目(东经 113°08'43.77", 北纬 22°34'14.38")

G2 南山村(东经 113°07′55.52″,北纬 22°34′48.62″)

G3 七四村(东经 113°09′29.21″, 北纬 22°34′44.03″)

G4 中东村(东经 113°10′00.22″, 北纬 22°33′02.83″)

G5 汇源新苑(东经 113°07′34.03″, 北纬 22°33′52.84″)

未经本公司书面同意,不得部分复制本检测报告! 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330

报告日期: 2018年05月09日

第3页共15页

G6 麻二村(东经 113°07′06.41″,北纬 22°34′36.88″)

检测项目: 二氧化硫、二氧化氮、总悬浮颗粒物、TVOC

采样时间: 2018年04月25日~2018年05月01日

采样频次: ①二氧化硫、二氧化氮每个点连续采样 7 天,每天采集 4 个时段小时值,每天采样 4 次,时间为北京时间: 02:00、08:00、14:00、20:00。

②二氧化硫、二氧化氮每个点连续采样7天,每天采样1次,每天连续采样20小时以上。

③总悬浮颗粒物每个点连续采样7天,每天采样1次,每次连续采样24小时。

④TVOC 每个点连续采样 7 天,每天采样 1 次,每天连续采样 8 小时。

2.4 噪声检测

检测点位: N1 距项目边界东北侧 1 米处, N2 距项目边界东南侧 1 米处

N3 距项目边界西南侧 1 米处, N4 距项目边界西北侧 1 米处

检测时间: 2018年04月25日~2018年04月26日

检测频次:每个点连续检测2天,每天分昼、夜两个时段进行检测,昼间(06:00~22:00)、

夜间(22:00~06:00)

三、检测结果

3.1 地表水检测

表

单位: mg/L(pH 值及注明除外)

衣丨				+ 12. mg/L(p	11 国人工 71小7
项目	采样日期	潮汐情况	W1	W2	W3
N TON		涨潮	18.4	18.5	18.4
	2018.04.25	退潮	23.6	22.8	23.2
	SINOS	涨潮	17.8	17.5	17.9
水温(℃)	2018.04.26	退潮	23.4	22.5	23.6
	2018.04.27	涨潮	17.6	17.8	17.6
		退潮	22.4	22.8	23.1
A THE PARTY OF THE	2018.04.25	涨潮	7.24	7.16	7.32
		退潮	7.20	7.18	7.22
101	2010.04.26	涨潮	7.24	7.36	7.18
pH 值	2018.04.26	退潮	7.22	7.32	7.19
	2010 04 27	涨潮	7.19	7.24	7.22
	2018.04.27	退潮	7.21	7.18	7.22

SINOATION SINOATION 报告编号: XCDE18040604 报告日期: 2018年05月09日 第4页共15页

SINOATION SINOATION SMOATION SMOATION FIGURE TO THE SMOATION

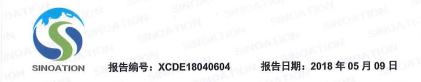
SINOATION SINOATION SINOATION

项目	采样日期	潮汐情况	W1	W2	W3
TION	2018.04.25	涨潮	41	34	37
化学需氧量	2018.04.23	退潮	30	43	42
	2018.04.26	涨潮	35	39	40
	2018.04.20	退潮	32	43	33
	2018.04.27	涨潮	41	37	38
110	2016.04.27	退潮	26	36	43
	2018.04.25	涨潮	12.8	11.0	11.1
五日生化需氧量	2010.04.23	退潮	9.2	12.7	12.9
	2018.04.26	涨潮	8.7	10.9	11.4
五月五月前中	2010.04.20	退潮	9.6	13.2	8.5
	2018.04.27	涨潮	11.7	10.3	9.4
V.1101, -10	2010.01.27	退潮	7.7	10.1	12.7
	2018.04.25	涨潮	56	34	49
	2010.04.23	退潮	42	58	71
悬浮物	2018.04.26	涨潮	47	50	46
总件初	2010.04.20	退潮	43	40	54
	2018.04.27	涨潮	35	27	56
	2010.04.27	退潮	33	55	28
溶解氧	2018.04.25	涨潮	4.46	4.16	4.35
	2010.01.23	退潮	4.62	4.12	4.63
	2018.04.26	涨潮	4.36	4.08	4.16
		退潮	4.68	4.75	4.72
	2018.04.27	涨潮	4.18	4.52	4.32
Silver dil	2010.01.27	退潮	4.18	4.12	4.12
NOTATION	2018.04.25	涨潮	6.77	6.76	5.50
		退潮	6.96	3.45	5.89
氨氮	2018.04.26	涨潮	5.31	4.99	6.11
	ard .	退潮	4.97	4.10	5.18
	2018.04.27	涨潮	5.65	5.49	6.81
all and	511	退潮	3.40	3.99	5.42
	2018.04.25	涨潮	0.06	0.09	0.12
		退潮	0.09	0.08	0.20
石油类	2018.04.26	涨潮	0.17	0.21	0.14
	VIIIO.	退潮	0.14	0.07	0.09
	2018.04.27	涨潮	0.09	0.19	0.04
ATTIVE TOTAL		退潮	0.19	0.15	0.12

报告编号: XCDE18040604 报告日期: 2018年05月09日 第5页共15页

项目	采样日期	潮汐情况	W1	W2	W3
总磷	2018.04.25	涨潮	0.79	0.65	1.95
		退潮	0.76	0.24	1.90
	2010.04.26	涨潮	0.94	0.44	1.80
	2018.04.26	退潮	0.94	0.91	1.36
	2010.04.27	涨潮	0.26	0.63	1.16
	2018.04.27	退潮	0.82	0.96	1.49
5110	2010.04.05	涨潮	0.004L	0.004L	0.004L
	2018.04.25	退潮	0.004L	0.004L	0.004L
). /A ##	2010.04.26	涨潮	0.004L	0.004L	0.004L
六价铬	2018.04.26	退潮	0.004L	0.004L	0.004L
	2018.04.27	涨潮	0.004L	0.004L	0.004L
		退潮	0.004L	0.004L	0.004L
SINUS SINON SINON	2018.04.25	涨潮	0.05L	0.05L	0.05L
		退潮	0.05L	0.05L	0.05L
	2018.04.26	涨潮	0.05L	0.05L	0.05L
]离子表面活性剂		退潮	0.05L	0.05L	0.05L
SINDA I GIN	2018.04.27	涨潮	0.05L	0.05L	0.05L
MONTA		退潮	0.05L	0.05L	0.05L
CHIOATIC		涨潮	8.44×10 ⁶	6.32×10 ⁶	3.50×10 ⁴
HON	2018.04.25	退潮	7.24×10 ⁶	1.70×10 ⁵	3.35×10 ⁵
L. 117 #15 #14 / A / A /	2010 04 26	涨潮	4.48×10 ⁶	8.99×10 ⁶	3.73×10 ⁶
大肠菌群(个/L)	2018.04.26	退潮	6.04×10 ⁶	6.90×10 ⁴	7.00×10 ⁴
FACEL	101	涨潮	1.16×10 ⁵	8.79×10 ⁶	5.78×10 ⁵
ello.	2018.04.27	退潮	4.24×10 ⁶	4.23×10 ⁵	5.95×10 ⁴
- MORTION -	2010 04 25	涨潮	0.001L	0.001L	0.001L
SINO	2018.04.25	退潮	0.001L	0.001L	0.001L
YON MENTAL MANAGEMENT	2010.04.24	涨潮	0.001L	0.001L	0.001L
福	2018.04.26	退潮	0.001L	0.001L	0.001L
ATION	2010.01.57	涨潮	0.001L	0.001L	0.001L
SWIGHT	2018.04.27	退潮	0.001L	0.001L	0.001L

退潮 0.001L 0.001 未经本公司书面同意,不得部分复制本检测报告! 广东新创华科环保股份有限公司 东莞市道滘镇万道路 2 号华科城(创新岛产业孵化园内 2-3 栋) 邮政编码 523170 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330


报告日期: 2018年05月09日

3.2 地下水检测

单位: mg/L(pH 值除外)

采样点位	单位: mg/L(pH 值除外 检测项目及测试结果					
检测项目	U1	U2	U3			
pH 值	6.89	6.92	6.90			
总硬度(以 CaCO3 计)	136	97.5	163			
挥发酚	0.0003L	0.0003L	0.0003L			
高锰酸盐指数	3.2	2.7	3.2			
氨氮	0.184	0.173	0.149			
氯化物	14.8	23.5	7.83			
氟化物	0.042	0.127	0.102			
溶解性总固体	342	274	298			
硫酸盐	7.63	18.8	20.6			

注: L表示检验数值低于方法检出限,以所使用的方法检出限值报出。

IOA I	ION	双口物分:	ACDE 10040004	JK III I	H701. 2010	- 00 / 1 0	0 H	70.
	3.3	环境空气检测						
	表 5	· Plan	SINOPLY	Flore	LETON .		- 51M	

检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
90%	13.20	2018.04.25	0.012	0.015	0.012	0.009	0.011
	PLOSE	2018.04.26	0.011	0.013	0.009	0.007	0.012
	SHOW	2018.04.27	0.007	0.008	0.013	0.012	0.013
	二氧化硫	2018.04.28	0.010	0.009	0.007	0.007	0.008
	SINOR	2018.04.29	0.007	0.008	0.007	0.018	0.011
	MOUNT	2018.04.30	0.016	0.014	0.018	0.008	0.013
	Philose Philos	2018.05.01	0.010	0.013	0.014	0.010	0.013
	OP TOP	2018.04.25	0.025	0.026	0.033	0.025	0.029
	SIMOAT	2018.04.26	0.034	0.039	0.038	0.022	0.025
	4019	2018.04.27	0.035	0.039	0.030	0.029	0.022
G1本	二氧化氮	2018.04.28	0.032	0.036	0.024	0.035	0.023
项目	-019	2018.04.29	0.033	0.033	0.027	0.033	0.025
	LACKET AL	2018.04.30	0.038	0.037	0.033	0.036	0.022
	4	2018.05.01	0.035	0.035	0.038	0.031	0.028
	HOACING.	2018.04.25	- //sc	N3(1)	THE MORT	TATIO	0.101
	PM PMP	2018.04.26		401	Take	507	0.140
	HOFFERM	2018.04.27		/5//	45/o/	TION	0.164
	总悬浮颗粒物	2018.04.28		Q=	1 / E	- SINO	0.198
SINOA 10M	HOLTAGE	2018.04.29		g/**	NO PARIOT	ATIGN	0.142
	Silder Sil	2018.04.30	2.		- SIM	" SINO	0.156
	" LIDI	2018.05.01	Ell	- IND AND	WHITTO	MOST	0.180

	报告编号:XC	DE18040604	报告日	期: 2018年0	5 月 09 日	第8页共	15 市
表 6			STRIDATION	organi	ATION		mg/m ³
检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
(PAC)	MOTAL	2018.04.25	0.010	0.012	0.018	0.013	0.011
	The Shall	2018.04.26	0.013	0.017	0.013	0.015	0.012
	HON - HON	2018.04.27	0.008	0.012	0.018	0.014	0.009
	二氧化硫	2018.04.28	0.007	0.013	0.012	0.007	0.007
	MON	2018.04.29	0.016	0.013	0.009	0.010	0.009
	Blistow 11	2018.04.30	0.011	0.011	0.010	0.015	0.013
	More	2018.05.01	0.017	0.008	0.012	0.014	0.010
		2018.04.25	0.033	0.027	0.038	0.033	0.035
		2018.04.26	0.024	0.036	0.033	0.023	0.038
32 南		2018.04.27	0.034	0.025	0.038	0.022	0.027
山村	二氧化氮	2018.04.28	0.025	0.030	0.031	0.033	0.028
шт	-WONDON	2018.04.29	0.039	0.026	0.023	0.024	0.028
014	5/84	2018.04.30	0.031	0.028	0.038	0.038	0.034
WIO!	TION ARTIS	2018.05.01	0.031	0.023	0.025	0.030	0.028
	SIM	2018.04.25	N	KE-	tort-	210	0.130
100	Anon	2018.04.26			ALMONTO.	ION ACOU	0.187
Sire	SINON	2018.04.27	- T	- 12		- 'sf	0.122
2110	总悬浮颗粒物	2018.04.28		===010	W -108	OF	0.107
51	ION SINOI	2018.04.29	cell		7 3 4	Blife-	0.097
OAT	DIN	2018.04.30		291/-/	OATIO	2007	0.156
	WIC WALL	2018.05.01			-500	RENUM	0.114

报告编号: XCDE18040604 报告日期: 2018 年 05 月 09 日

2018.05.01

0.141

表 7	JOH TON	-311	- Sligon	ON ADMIS	MONTAGE	单位:	mg/m ³
检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
5(1)(0)	CONTRACTION	2018.04.25	0.008	0.008	0.014	0.013	0.018
	Succession	2018.04.26	0.013	0.018	0.011	0.017	0.018
	PATION	2018.04.27	0.013	0.011	0.015	0.016	0.018
	二氧化硫	2018.04.28	0.010	0.015	0.009	0.017	0.014
	TOWN TOWN	2018.04.29	0.018	0.015	0.013	0.017	0.007
	SUMON	2018.04.30	0.013	0.015	0.012	0.011	0.016
	MOUTH	2018.05.01	0.008	0.013	0.013	0.013	0.008
	Elian.	2018.04.25	0.028	0.033	0.027	0.028	0.037
	ON TON	2018.04.26	0.038	0.037	0.027	0.023	0.028
Man	SWON - M	2018.04.27	0.026	0.037	0.038	0.029	0.031
G3 七 四村	二氧化氮	2018.04.28	0.024	0.037	0.027	0.034	0.034
E44.1	SHOPLE	2018.04.29	0.038	0.038	0.027	0.036	0.034
	ION S	2018.04.30	0.028	0.023	0.030	0.029	0.037
	LA OZOLA	2018.05.01	0.027	0.037	0.028	0.039	0.025
	4	2018.04.25		ALIA	Ellor ⁴	- 5/1	0.195
	MONTAGE	2018.04.26	- 140	V -368	TAOM TO A	NYA - MOI	0.115
	and Silver	2018.04.27	-1130	1 1 1 TO 2		SIM	0.129
	总悬浮颗粒物	2018.04.28	3	The sp		HOLL	0.137
	SING.	2018.04.29	- 100	VIII 1	1 2 SW	SIMON	0.167
	HOLLS	2018.04.30			KOPTION	2-110N	0.189

2018.04.30

2018.05.01

报告日期: 2018年05月09日

第10页共15页

0.128

0.167

表 8	N	SINC.				单位:	mg/m ³
检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
	HOLLANDE	2018.04.25	0.011	0.010	0.012	0.014	0.014
	The State	2018.04.26	0.010	0.010	0.017	0.016	0.007
	gor saok	2018.04.27	0.009	0.009	0.013	0.018	0.018
	二氧化硫	2018.04.28	0.018	0.008	0.007	0.013	0.018
	NOW	2018.04.29	0.016	0.016	0.018	0.014	0.017
	SEIDALIN	2018.04.30	0.011	0.013	0.018	0.007	0.014
	· · · More-	2018.05.01	0.014	0.013	0.017	0.011	0.009
	PADAL	2018.04.25	0.036	0.033	0.032	0.035	0.032
10	d.	2018.04.26	0.036	0.039	0.025	0.029	0.027
a. d.		2018.04.27	0.025	0.025	0.039	0.038	0.033
G4 中 东村	二氧化氮	2018.04.28	0.028	0.034	0.027	0.023	0.028
71/11		2018.04.29	0.032	0.026	0.027	0.035	0.028
013		2018.04.30	0.027	0.022	0.028	0.026	0.025
HOP	TION	2018.05.01	0.030	0.033	0.023	0.023	0.025
Local I	- 50.	2018.04.25		3	10H-	504	0.176
34-	anoli .	2018.04.26		288	ENGAN	- ICATION	0.142
211/1	SINO	2018.04.27		A1001/F	-	_ SW	0.193
NTIO!	总悬浮颗粒物	2018.04.28				1014	0.172
58	SINO	2018.04.29		- Loui	7	SVI	0.124

SINOATION 报告编号: XCDE18040604 报告日期: 2018 年 05 月 09 日 第 11 页 共 15 页

表 9						单位:	mg/m ³
检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
EINO.	CITALION	2018.04.25	0.017	0.014	0.013	0.008	0.008
	21Mm	2018.04.26	0.009	0.008	0.015	0.016	0.011
	DATION	2018.04.27	0.015	0.010	0.013	0.009	0.007
	二氧化硫	2018.04.28	0.013	0.018	0.014	0.009	0.017
	MATION .	2018.04.29	0.011	0.017	0.010	0.012	0.016
	SHOP	2018.04.30	0.016	0.008	0.015	0.011	0.007
	N THOM	2018.05.01	0.010	0.016	0.009	0.011	0.008
	Slan. Carlo	2018.04.25	0.025	0.023	0.027	0.030	0.036
	OF HON	2018.04.26	0.036	0.038	0.031	0.034	0.030
MOR	SINOPILO	2018.04.27	0.039	0.032	0.037	0.033	0.039
G5 汇 源新苑	二氧化氮	2018.04.28	0.035	0.032	0.027	0.039	0.026
70年末月夕日	-INOACHO	2018.04.29	0.025	0.028	0.029	0.026	0.035
	51	2018.04.30	0.037	0.039	0.022	0.036	0.032
	TACINA	2018.05.01	0.028	0.023	0.039	0.038	0.039
		2018.04.25			A	- 2lp	0.172
	MONTAGE	2018.04.26		S7/20	TAOR MA	1014 410	0.144
	SINO	2018.04.27		MODE CO		2INDC	0.138
	总悬浮颗粒物	2018.04.28	- 4	N - 1 - 10	<u> </u>	TION	0.104
	THE SHIP	2018.04.29		br - 1	- Sildo	SHIPA	0.171
	HOM.	2018.04.30		S. NETE /	KION TON		0.149
	and O Park	2018 05 01	TAN T	ALLEY Y	1810	IN COLUMN	0.167

报告编号: XCDE18040604 报告日期: 2018 年 05 月 09 日

第12页共15页

表 10	M POH					单位:	mg/m ³
松测占	检测数据	□ 14 □ 111	00 00 00 00	00.00.00.00	14.00 45.00	20.00.21.00	пин

衣 10			cit	No.	715	平位:	mg/m
检测点	检测数据 污染物	采样日期	02:00~03:00	08:00~09:00	14:00~15:00	20:00~21:00	日均值
	Our MONTAGE	2018.04.25	0.013	0.008	0.014	0.009	0.016
	21145. P.114	2018.04.26	0.009	0.017	0.018	0.017	0.014
	TION	2018.04.27	0.008	0.007	0.016	0.009	0.016
	二氧化硫	2018.04.28	0.011	0.012	0.013	0.017	0.007
	POILS	2018.04.29	0.007	0.017	0.013	0.007	0.012
	SINGATA	2018.04.30	0.014	0.016	0.008	0.016	0.017
ATION	HOW	2018.05.01	0.018	0.011	0.010	0.017	0.015
5)	MONIS	2018.04.25	0.039	0.036	0.028	0.028	0.031
	transition in	2018.04.26	0.036	0.022	0.035	0.023	0.030
O A	SINOATION	2018.04.27	0.024	0.033	0.035	0.031	0.038
G6 麻 二村	二氧化氮	2018.04.28	0.030	0.033	0.030	0.025	0.034
-41	CHICATION	2018.04.29	0.035	0.023	0.035	0.037	0.023
1000	SIM	2018.04.30	0.036	0.039	0.030	0.036	0.028
-140	CHOP CAN'T	2018.05.01	0.026	0.039	0.038	0.029	0.039
- 11	31140	2018.04.25			North-	_gitti	0.178
W.D.	NATION AND	2018.04.26	-	<u> </u>	THE STATE OF THE S	" - 1/O'	0.198
- SIM	SINON	2018.04.27		780 1. 48		- 5V	0.143
OP TO	总悬浮颗粒物	2018.04.28	- 1	11 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14	- TOP	1014	0.161
- 5	MON	2018.04.29	-	- L	V 87.	-5/8-1	0.110
1	ON MORE	2018.04.30	- 13		TOATION	ATION .	0.169
Men	SIMOA	2018.05.01		-	FEMALE	-MOM	0.121

SINOATION 报告编号: XCDE18040604 报告日期: 2018 年 05 月 09 日

第13页共15页

1 11

	-	ng/m	

检测点	检测数据 污染物	采样日期	8 小时值
ENROPIE	17米10	2018.04.25	0.17
	MOINE CHILD	2018.04.26	0.18
	1991	2018.04.27	0.20
G1 本项目	TVOC	2018.04.28	0.25
OI 李·从日	STATE TO STATE OF THE PARTY OF	2018.04.29	0.23
		2018.04.30	0.15
	ALION COLON	2018.05.01	0.12
	ellac.	2018.04.25	0.04
	id do	2018.04.26	0.22
	CAT TO STATE OF THE STATE OF TH	2018.04.27	0.24
G2 南山村	TVOC	2018.04.28	0.24
100		2018.04.29	0.05
	JOETHON T	2018.04.30	0.24
	" ENDE	2018.05.01	0.20
100	y 1/4	2018.04.25	0.17
	ALL PARTIES	2018.04.26	0.07
	dilla-	2018.04.27	0.04
G3 七四村	TVOC	2018.04.28	0.21
	WALLACT !	2018.04.29	0.06
	Share A	2018.04.30	0.18
	work!	2018.05.01	0.12
CONTRACT.	W AND THE	2018.04.25	0.15
	SIMO.	2018.04.26	0.10
G4 中东村	TVOC	2018.04.27	0.23
		2018.04.28	0.14
		2018.04.29	0.04
	N	2018.04.30	0.13
	DATION	2018.05.01	0.15
50	SINU	2018.04.25	0.11
	0.72	2018.04.26	0.06
G5 汇源新苑	原新苑 TVOC	2018.04.27	5M 0.19 ASION
		2018.04.28	0.04
		2018.04.29	0.08
		2018.04.30	0.19
	SING	2018.05.01	0.09
VIION	MON	2018.04.25	0.03
	WATIO!	2018.04.26	0.16
	SIMO	2018.04.27	0.16
G6 麻二村	TVOC	2018.04.28	0.21
	OB LIVE	2018.04.29	0.04
	SIMO	2018.04.30	0.12
1034	S Comment	2018.05.01	0.12

SINOATION 报告编号: XCDE18040604

报告日期: 2018年05月09日

第14页共15页

3.4 噪声

3.4 噪声 表 12	ENGRICH	NOTION .		单位: dB(A
MOTTON	100	PACE SHICK	检	测结果
检测点编号	检测点名称	检测日期	昼间	夜间
100000	51N°	SIMON CINO	L_{eq}	L_{eq}
N1	距项目边界东北侧 1 米处	2018.04.25	59.2	49.4
and .	- THE STATE OF THE	2018.04.26	59.4	49.3
N2	距项目边界东南侧1米处	2018.04.25	58.9	49.0
1000	11 77 77 77 77 77 77 77 77 77 77 77 77 7	2018.04.26	59.1	49.2
N3	距项目边界西南侧1米处	2018.04.25	57.3	48.6
-	TO THE MAIN TAKE	2018.04.26	57.0	48.4
N4	距项目边界西北侧 1 米处	2018.04.25	58.1	48.8
	TAN I MORE I NO.	2018.04.26	58.4	48.9

	A STATE OF THE STA	And the second second	2018.04.26 58.4 48.	9
	四、检测方法	长附表	SIN SINOATIO	HOIT
	附表 1: 地表力	火检测分析方法		SINO
	分析项目	方法编号(含年号)	检测标准 (方法) 名称	检出限
	水温	GB/T 13195-1991	《水质 水温的测定 温度计或颠倒温度计测定法》	/
	pH 值	GB/T 6920-1986	《水质 pH 值的测定 玻璃电极法》	1
	化学需氧量	НЈ 828-2017	《水质 化学需氧量的测定 重铬酸盐法》	4mg/L
	五日生化需氧量 (BOD₅)	НЈ 505-2009	《水质 五日生化需氧量 (BODs) 的测定 稀释与接种法。	2000
	悬浮物	GB/T 11901-1989	《水质 悬浮物的测定 重量法》	4mg/L
	溶解氧	НЈ 506-2009	《水质 溶解氧的测定 电化学探头法》	/
	氨氮	НЈ 535-2009	《水质 氨氮的测定 纳氏试剂分光光度法》	0.025mg/I
	石油类	НЈ 637-2012	《水质 石油类和动植物油类的测定 红外分光光度法》	0.01mg/L
	总磷	GB/T 11893-1989	《水质 总磷的测定 钼酸铵分光光度法》	0.01mg/L
	六价铬	GB/T 7467-1987	《水质 六价铬的测定 二苯碳酰二肼分光光度法》	0.004mg/L
	阴离子表面活性剂	GB/T 7494-1987	《水质 阴离子表面活性剂的测定 亚甲蓝分光光度法》	0.05mg/L
T. S	粪大肠菌群	НЈ/Т 347-2007	多管发酵法和滤漠法《水质 粪大肠菌群的测定 多管发酵法和滤膜法 (试行)》	
SIMO A	镉	GB/T 7475-1987	/水质 相 按 相 恒化测量 医乙酰	0.001mg/L

未经本公司书面同意,不得部分复制本检测报告! 广东新创华科环保股份有限公司 东莞市道滘镇万道路 2 号华科城(创新岛产业孵化园内 2-3 栋) 不至今公司书面同意,不得部分复制本检测报告! 广东新创华科环保股份有限公司 东莞市道滘镇万道路 2 号华科城(创新岛产业孵化园内 2-3 栋) 邮政编码 523170 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330

SINOATION 报告编号: XCDE18040604 报告日期: 2018 年 05 月 09 日

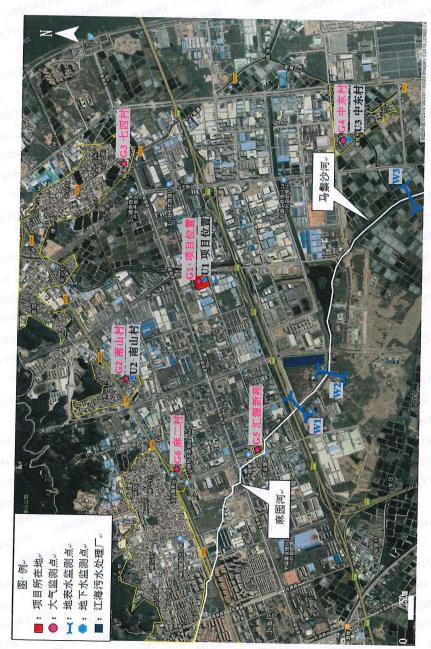
附表 2: 地	下水检测分析方法	M SINOATION	ION
分析项目	方法编号(含年号)	检测标准 (方法) 名称	检出限
pH 值	GB/T 6920-1986	《水质 pH 值的测定 玻璃电极法》	MOUN
总硬度	GB/T 5750.4-2006 (7.1)	乙二胺四乙酸二钠滴定法 《生活饮用水标准检验方法 感官性 状和物理指标》	1.0mg/L
挥发酚	НЈ 503-2009	《水质 挥发酚的测定 4-氨基安替比林分光光度法》	0.0003mg/I
高锰酸盐指数	GB/T 11892-1989	《水质 高锰酸盐指数的测定》	0.5mg/L
氨氮	НЈ 535-2009	《水质 氨氮的测定 纳氏试剂分光光度法》	0.025mg/L
氯化物	НЈ 84-2016	《水质 无机阴离子(F、CI、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₃ ² 、SO ₄ ²)的测定 离子色谱法》	0.007mg/L
氟化物	НЈ 84-2016	《水质 无机阴离子(F、CI、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₃ ² 、SO ₄ ²)的测定 离子色谱法》	0.006mg/L
溶解性总固体	GB/T 5750.4-2006 (8.1)	称量法 《生活饮用水标准检验方法 感官性状和物理指标》	1mg/L
硫酸盐	НЈ 84-2016	《水质 无机阴离子(F、Cl、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₃ ² 、 SO ₄ ²)的测定 离子色谱法》	0.018mg/L

附表 3: 环境空气检测分析方法

分析项目	方法编号(含年号)	检测标准(方法)名称	检出限
二氧化硫	НЈ 482-2009	《环境空气 二氧化硫的测定甲醛吸收-副玫瑰 苯胺分光光度法》	0.007mg/m³ (小时均值 0.004mg/m³ (日均值)
氮氧化物(一氧化氮 和二氧化氮)	НЈ 479-2009	《环境空气 氮氧化物 (一氧化氮和二氧化氮) 的测定 盐酸萘乙二胺分光光度法》	0.015mg/m³ (小时均值 0.006mg/m³ (日均值)
总悬浮颗粒物	GB/T 15432-1995	《环境空气 总悬浮颗粒物的测定 重量法》	0.001mg/m ³
总挥发性有机化合物 (TVOC)	GB 50325-2010 附录 G	室内空气中总挥发性有机化合物(TVOC)的 测定 气相色谱法 《民用建筑工程室内环境污 染控制规范》	

(TVOC)	SINOR	染控制规范》	dillow.
附表 4: 噪声检	加士公土		
检测项目	方法依据	检测方法	检测范围
环境噪声	GB 3096-2008	《声环境质量标准》	20~142 dB(A)

ホ元申退洛領万道路 2 号华科城(创新岛产业孵化园内 2-3 栋) 邮政编码 523170 电话: (86-769) 2662 0898 传真: (86-769) 2662 0330 TION SINOATION SINOATION SINOATION SINOATION SINOATION



环境条件	LOVE	十二	9	测点温度	温度 (°C)		9	测点气压	压 (kPa)	2 2 2		KG R	TZ TZ	SE SE	5			
参道市	采样日期	、 、 、 、 、 、	2:00-	8:00-	14:00-	20:00-	2:00-	8:00-		20:00-	2:00-	8.00		00.00		Inc)	(m/s)	-
W FX ==			3:00	00:6	15:00	21:00	3:00	9:00	15:00	21:00	3:00	9.00	15:00	20:00-	2:00-	8:00-	14:00-	20:00-
	2018.04.25	響	20.3	23.1	26.1	22.9	101.1	101.1	101.0	101.0	东南风		15.00	4	3:00	9:00	15:00	21:00
	2018.04.26	垂	19.9	25.1	26.0	20.8	100.9	100.9	100.8	100.8	西南风	南风	图	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	4.0	3.0	3.1	
	2018.04.27	悾	19.3	24.1	25.0	20.1	100.7	100.8	100.7	100.8	南风		田田区		1.0	2.3	2.3	
G1 本项目	2018.04.28	聖	20.6	24.1	25.8	23.4	100.9	100.8	100.7	100.6	东南风	东南风	E E		0.1	4.7	2.1	67
	2018.04.29	響	19.9	25.5	26.0.	20.9	100.8	100.9	100.7	100.7	南风	水 型区		E H	0.1	7.1	5.1	
	2018.04.30	靈	20.0	25.5	26.0	20.9	100.8	100.8	100.7	100.7	图区	本	4 日	Z E	4.7	7.7	7.7	2.3
	2018.05.01	響	19.8	25.5	26.2	20.3	100.8	100.7	100.7	100.7	屋 屋	次面次	4 本 本 国 区	₹ E	2.0	2.0	1.9	2.6
	2018.04.25	響	20.1	23.0	26.1	22.9	101.0	101.1	101.0	101.0	东南风	区 图	4 分围区	· · · · · · · · · · · · · · · · · · ·	2.8	2.4	2.2	2.8
	2018.04.26	垂	20.0	25.1	26.2	20.6	100.8	100.8	100.9	100.9	区	国地田	大 用 下	光 玉 光	5.4	3.0	3.1	3.5
	2018.04.27	暗	19.4	24.2	25.0	20.0	100.9	100.8	100.7	100.8	[图	E H	Z H	四里 出	7.7	2.3	2.3	2.8
G2 南山村	2018.04.28	垂	21.0	24.1	25.7	22.8	1008	1007	1006	100.0	E HE	¥ H	四番风	区 服 区	I.8	2.3	2.1	1.7
	2018.04.29	響	19.9	25.1	26.0	20.0	100 %	100.8	100.0	1002	¥ I	X E	图》	南风	1.8	1.7	1.6	1.7
	2018.04.30	幽	19.0	75.1	25.4	2000	1000	0.001	1.001	100.7	展	米南风	东南风	南风	2.3	2.2	2.2	2.3
	2018.05.01	世	100	25.0	25.0	50.0	100.0	100.9	100.7	100.8	图区	东南风	东南风	南风	2.6	2.0	2.0	2.6
E D	2018 04 25	2 世	200	0.62	7.67	6.02	100.6	100.7	100.7	100.7	南风	东南风	东南风	南风	2.8	2.4	2.2	2.8
	2018.04.26	臣 世	20.2	1.67	7.00	22.7	101.1	101.0	100.9	101.0	东南风	南风	东南风	东南风	3.4	3.0	3.1	3.5
	2018:04:20	里 世	19.8	1.62	25.9	20.8	100.8	100.8	100.9	100.9	西南风	西南风	南风	西南风	2.7	2.3	2.3	2.8
23十三年	2018 04 28	F	1.61	7.4.1	7.67	19.9	100.7	100.8	100.9	100.8	西南风	南风	西南风	南风	1.7	2.3	2.1	1.7
	2010.04.20	E t	20.9	23.8	25.6	23.0	100.9	9.001	100.7	100.8	东北风	东北风	东北风	东北风	1.9	1.8	1.6	1.7
	2010.04.29		20.0	25.5	25.8	20.9	100.8	100.8	100.7	100.6	南风	东南风	东南风	南风	2.4	2.2	2.1	2.2
	2018.04.30	聖十	20.1	25.5	25.8	20.9	100.8	100.8	100.7	100.8	南风	东南风	东南风	南风	2.5	2.0	1.9	26
314	2018.05.01	響	20.3	25.5	25.8	20.3	9.001	100.7	100.8	100.7	东南风	东南风	东南风	南风	28	7.0	22	0 0

SINOATION

20:00-2.8 1.8 2.3 2.6 2.3 2.6 2.8 1.7 1.7 2.3 2.6 2.8 3.5 2.8 1.7 1.7 2.8 3.5 14:00-1.9 1.7 1.6 1.9 2.2 3.1 2.3 2.3 1.6 2.2 1.9 2.3 2.3 2.1 2.1 2.1 风速 (m/s) 8:00-2.0 3.0 1.7 2.2 2.0 1.8 2.5 2.3 2.4 3.0 2.3 2.4 1.7 2.1 2.0 2.4 3.0 2.3 2.4 2.2 9:00 1.7 2.8 1.6 2.4 2.5 3.4 1.9 2.4 2.6 1.8 1.8 2.3 5.6 3.4 2.7 2:00-2.7 1.7 2.7 3.4 2.7 东南风 东南风 西南风 西南风 东南风 西南风 西南风 东南风 东南风 西南风 西南风 平区区 南风 20:00-南风 兩风 兩区 南风 那风 兩区 那风 东南风 东南风 东南风 西南风 东南风 东南风 西南风 东南风 东南风 西南风 东南风 东南风 东南风 东南风 西南风 东南风 东南风 东南风 14:00-15:00 兩风 南风 东南风 东南风 东南风 西南风 东南风 西南风 东南风 东南风 东南风 东南风 东南风 西南风 南风 8:00-那风 那风 南风 兩区 那区 南风 东南风 西南风 东南风 东南风 西南风 东南风 东南风 东南风 东南风 南风 南风 画区 南风 南风 兩风 南风 州区 南风 南风 南风 2:00-100.7 100.8 100.7 101.0 100.8 100.8 100.7 100.7 100.7 100.9 100.9 101.0 100.8 100.7 100.7 9.001 101.0 100.9 100.8 100.8 100.8 20:00-101.0 100.6 100.7 101.1 100.6 100.7 100.7 100.7 100.9 100.8 100.8 14:00-15:00 101.0 9.001 100.9 100.7 100.9 100.8 100.7 100.7 1009. 测点气压 (kPa) 101.1 101.1 8:00-101.1 101.0 100.7 100.7 100.8 100.8 100.7 100.7 100.9 100.8 100.9 100.8 100.7 100.9 100.9 100.6 100.8 100.8 100.9 9.001 100.8 100.7 100.8 101.1 100.8 100.9 100.8 100.8 100.8 100.8 101.0 100.8 100.7 100.9 100.8 100.9 100.9 100.8 3:00 22.9 20:00-20.7 20.1 20.1 20.0 22.5 20.9 20.9 22.8 21.0 21.0 20.8 22.8 20.9 22.6 21.2 21.2 21.2 22.9 20.8 14:00-25.9 25.9 25.7 26.0 26.0 25.9 26.1 26.0 25.0 26.1 25.9 25.1 25.8 测点温度(°C) 26.1 25.0 25.5 25.8 25.9 26.1 25.8 -00:8 23.1 24.2 25.5 23.0 25.2 25.1 25.1 24.1 25.5 25.6 25.6 24.1 25.5 25.6 24.1 25.0 23.9 25.1 23.1 24.1 9:00 20.2 20.9 20.2 20.5 19.9 19.9 19.3 2:00-20.1 9.61 20.7 20.1 19.6 20.4 19.5 20.8 20.1 19.8 20.3 20.1 20.1 天气状况 世 些 聖 霍 誓 豐 響 世 響 世 響 빹 擅 些 些 悾 雷 響 聖 续附表:气象参数 2018.04.30 2018.04.25 2018.04.30 2018.04.25 2018.04.27 2018.04.30 2018.04.25 2018.04.26 2018.04.28 2018.05.01 2018.04.26 2018.04.27 2018.04.28 2018.04.29 2018.05.01 2018.04.29 2018.04.28 2018.04.29 2018.05.01 采样日期 环境条件 G5 汇源新苑 G6 麻二村 检测点

附图: 点位分布示意图

_

附件6 脱模剂成分说明

南昌市荣兴压铸材料有限公司

908B 型号水性压铸脱模剂成分表:

进口有机硅乳液: 10%

氧化乙烯均聚物: 2%

矿物油: 2%

耐高温润滑脂: 4%

去离子水:余量

出租方(甲方):吴龙红柱 厂房租赁合同

承租方(乙方): 平 双方在自愿、平等、互利的基础上就甲方将其合 根据国家有关规定。中 法拥有的厂房出租给乙方 英语的有关事宜,双方达成协议并签定合同如下:

一、出租厂房情况

甲方出租给乙方的厂房座落在江门市江海区龙溪路 295 号 4 幢首层,租赁占 地面积为1200平方米,建筑面积为1020平方米。

二、厂房起付日期和租赁期限

1、厂房租赁自2020年 3 月17 日起,至2022年 3 月17日止。租

2、租赁期满,甲方有权收回出租厂房,乙方应如期归还,乙方需继续承租 的,应于租赁期满前三个月,向甲方提出书面要求,经甲方同意后重新签订租赁

三、租金及保证金支付方式

1、甲、乙双方约定,该厂房租赁月租金为人民币2°4°0元,年租金为2443°00.2°2、第一年年租金不变,第二年起递增率为3%—5%。

3、甲、乙双方一旦签订合同,乙方应向甲方支付厂房租赁保证金,保证金 为一个月租金。租金应预付三个月,支付日期在支付月5日前向甲方支付租金。

五、厂房使用要求和维修责任

1、租赁期间,乙方发现该厂房及其附属设施有损坏或故障时,应及时通知 甲方修复;甲方应在接到乙方通知后的3日内进行维修。逾期不维修的,乙方可 代为维修,费用由甲方承担。

2、 租赁期间, 乙方应合理使用并爱护该厂房及其附属设施。因乙方使用不 当或不合理使用,致使该厂房及其附属设施损坏或发生故障的,乙方应负责维修。

乙方拒不维修, 甲方可代为维修, 费用由乙方承担。

3、租赁期间,甲方保证该厂房及其附属设施处于正常的可使用和安全的状 态。甲方对该厂房进行检查、养护,应提前3日通知乙方。检查养护时,乙方应 予以配合。甲方应减少对乙方使用该厂房的影响。

4、乙方另需装修或者增设附属设施和设备的,应事先征得甲方的书面同意, 按规定须向有关部门审批的,则还应由甲方报请有关部门批准后,方可进行。

三、其他条款

1、 租赁期间, 如甲方提前终止合同而违约, 应赔偿乙方三个月租金。租赁 期间, 如乙方提前退租而违约, 应赔偿甲方三个月租金。

2、租赁期间,如因产权证问题而影响乙方正常经营而造成的损失,由甲方 负一切责任给予赔偿。

3、 可由甲方代为办理营业执照等有关手续, 其费用由乙方承担。

九、本合同未尽事宜, 甲、乙双方必须依法共同协商解决。

十、本合同一式肆分,双方各执贰分,合同经盖章签字后生效。 出租方: 大山石镇 电话: 13903030436 承租方: 平 电话: 18127506698

签约日期: 2020

附表 1 建设项目地表水环境影响评价自查表

	工作内容		自查项目					
	影响类型	水污染影响型 ☑;水文要素影响型	D 🗆					
影响	水环境保护目标	饮用水水源保护区 口;饮用水取水重点保护与珍稀水生生物的栖息地重要水生生物的自然产卵场及索饵涉水的风景名胜区 口;其他 口	<u>l</u> □;	目然保护区 □; 重要湿地 □; 目游通道、天然渔场等渔业水体 □;				
识		水污染影响型		水文要素影响型				
别	影响途径	直接排放口;间接排放区;其他口	水温 🗆 ; 径流 🛭	□; 水域面积 □				
		持久性污染物 □; 有毒有害污染物 □; 非持久性污染物 ☑; pH 值 □; 热污染 □; 富营养化 □; 其他 □	水温 u; 水位(水深)口;流速口;流量口;其他				
		水污染影响型		水文要素影响型				
	评价等级	一级 □; 二级□; 三级 A □; 三级 B ☑	一级 🗅; 二级 🗅	□; 三级 □				
		调查项目		数据来源				
	区域污染源	已建☑;在建□;拟建拟替代的污□;其他□ 染源□		环评□;环保验收□; δ监测□;入河排放口数据□;其他☑				
		调查时期		数据来源				
	境质量	丰水期☑; 平水期□; 枯水期□; 冰封期□ 春季☑; 夏季□; 秋季□; 冬季□	生态环境保护	主管部门□;补充监测□;其他☑				
现状调	区域水资源开发 利用状况	未开发口;开发量 40%以下口;开发	· 定量 40%以上□					
调查		调查时期		数据来源				
	水文情势调查	丰水期□;平水期□; 枯水期□;冰封期□; 春季□;夏季□;秋季□;冬季□	水行政主管部门 	□;补充监测□;其他□				
		监测时期	监测因子	监测断面或点位				
		丰水期□; 平水期□; 枯水期□; 冰封期□; 枯水期□; 冰封期□; 春季□; 夏季□; 秋季□; 冬季□		监测断面或点位个数()个				
		河流: 长度(3) km; 湖库、河口		积()km²				
	评价因子	(pH、DO、COD _{Cr} 、BOD ₅ 、氨氮						
	评价标准	· 河流、湖库、河口: Ⅰ类 □; Ⅱ类 近岸海域:第一类 □;第二类 □; 规划年评价标准()						
王 厄	1半46日1月1月	丰水期 □;平水期☑;枯水期 □; 春季 □;夏季 □;秋季☑;冬季 □						
现状评价	评价结论	春李□; 夏李□; 秋李凶; 冬李□ 水环境功能区或水功能区、近岸海域环境功能区水质达标状况□: 达标□; 不达标□ 水环境控制单元或断面水质达标状况□: 达标□; 不达标□ 水环境保护目标质量状况□: 达标□; 不达标□ 对照断面、控制断面等代表性断面的水质状况□: 达标□; 不达标区□ 不达标区□ 底泥污染评价□ 水资源与开发利用程度及其水文情势评价□ 水环境质量回顾评价□						

					自查项目				
		流域(区域)水 态流量管理要求- 状况与河湖演变料	与现状	满足程度、					
	预测范围	河流:长度()k	m;湖	库、河口及河	丘岸海域:	面积 () kn	n^2		
	预测因子	()							
影响预		丰水期 □; 平水∮ 春季 □; 夏季 □; 设计水文条件 □	秋季	□;冬季□					
测		建设期 □; 生产ឯ 污染控制和减缓护							
	预测方法	数值解 □:解析係 导则推荐模式 □:							
	水污染控制和水 环境影响减缓措 施有效性评价	区(流)域水环均	竟质量	改善目标 🗅;	替代削减	源 🗆			
影响评价	水环境影响评价	排放环港大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	以目	区、近岸海域域水质境质量水质量控制指标 人名 量时 医电时 医电时 医电动 医电动 医电动 医电动 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺	以环境功能 世要求,重 示要求,重 示要求 □ 示要求情势 证域)排放	点行业建设项目 变化评价、主要 口的建设项目,	更水文 应包	文特征值景 括排放口	沙响评价、 设置的环
		污染物名称 排放量/(t/a) 排放浓度/(mg/L)							
	污染源排放量核	(COD _{Cr})		0.021		2	20		
	算	(NH ₃ -N)		0.001			1	15	
		污染源名称	排污	许可证编号	污染物名	弥 排放量/ (t/a	1)	排放浓度	/ (mg/L)
	替代源排放情况	()		()	()	()		()
	生念流重備定	生态流量:一般z 生态水位:一般z	k期()m; 鱼	类繁殖期 () m; 其他	() m	n³/s
	1 1人1条1台加	污水处理设施 ② ; 依托其他工程措施		其他 🗆		保障设施 □; ▷			
防				环境			污	染源	
防治措施	监测计划	监测方式		手动 口; 自动]	测 手动 ☑;	自动	仂 □; 无监	岳测 □
旭		监测点位		((生活污水处			
	>- >+ dL LII. > 1 >+ > 1	监测因子	3	()	(pH、COD	er, B	BOD ₅ 、氨	氮、SS)
	l .	CODer: 0.021t/a							
)) ((可以接受 ☑;不			ᇈᆂᇩᆉ	上 宏			
汪: "□	□"万勾选坝,可√	;"()"为内	谷項与	坝;"备汪"	习具他补允	内谷。			

表 2 建设项目大气环境影响评价自查表

	工作内容					自查项	目				
评价等	评价等级		一级 🗆			二	级区			三级	
级与范 围	评价范围	边长	:=50km	. 🗆	j	边长 5	~50]	km □		边长=5 k	cm ☑
マクロ	SO ₂ +NO _x 排放量	≥ 2000t/a□ 500 ~ 2000t/a□						<500 t/	′a ☑		
评价因 子	评价因子		亏染物: 他污染	锡及其 物: V	化合物 OCs	IJ		包括二		PM2.5□ CPM2.5\	Z
评价标准	评价标准	国家标	₹准☑	地	方标准		ß	付录 D☑		其他标	京准 □
	环境功能区		∸类区□			二美		1		类区和二	二类区口
现状评	评价基准年					2019 年	Ē				
价	环境空气质量 现状调查数据来源	长期例行监测数据□				主管部门发布的数据☑			顼	见状补充	监测□
	现状评价	达标区□						不達	不达标区☑		
污染源 调查	调查内容	1 本项目非正堂排放源 1				代的污 原□	X 域 / 写 4			染源□	
	预测模型	AERMOD	DD ADMS AUSTAL2 00		00	EDMS D	Γ	CALPUFI	FM	△	其他□
	预测范围	边长≥ 50km□			边长	€5~50	0km		j	边长 = 5	km□
	预测因子	预测)					PM _{2.5} 次 PM _{2.5}		
大气环 境影响	正常排放短期浓度贡 献值	C *	项Ⅱ最大	占标率<	占标率≤100%□ (C 本项目最大占标率>100		00% □	
预测与	正常排放年均浓度贡	一类区	C本項	5月最大	占标率	≦≤10%⊡		C _{本项目} 最	大村	示率>10	% □
评价	献值	二类区	C本項	5月最大	占标率	≦≤30%⊡	C 本项目最大标率>30%			% □	
	非正常排放1h 浓度 贡献值		时长 h	C 本项	目占标:	率≤100	% □	$C_{_{\phi \bar{\eta} \theta}}$	占材	示率>10	00%□
	保证率日平均浓度和 年平均浓度叠加值	(C _{叠加} 达材	示 □	C 4		C _{叠加} 不	"不达标□			
	区域环境质量的整体 变化情况		k ≤-20%	% □				k >-2	20%		
环监测	污染源监测	监测因子:	VOCs· 合物	、锡及非	其化			『监测 ☑		无监	——— [测 _□
计划	环境质量监测	监	测因子	:		监测。	点位数	数()		无监	.测口
)파 /A /J:	环境影响	<u> </u>	丁以接受					不可	以扌	妾受 □	
评价结论	大气环境防护距离				不设置	大气防	护距	i离			
NG.	污染源年排放量	颗粒物: 0.0	33t/aV(OCs: 0.0	61t/a						

附表 3 环境风险评价自查表

工	作内容				完成情况			
		名称	废活性	废UV灯				
	危险物质	, .	炭	管				
		存在总量/t	0.881	0.005	W		W. 500 (1 T l	
		大气		范围内人口			数>500, <1 万人	
风险调查					200m 范围内人			
	环境敏感性	地表水		能敏感性	F1 🗆	F2□	F3 🗆	
	1 20 2003			目标分级	S1 🗆	S2 🗆	S3□	
		地下水		能敏感性	G1□	G2□	G3 □	
		, .,	包气带	方污性能	D1 □	D2□	D3 □	
物质及工	艺系统危险性	Q值		1 🗸	1≤Q<10	10≤Q<100□	Q>100□	
170灰及工	乙尔凯厄娅压	M 值	M.		M2□	M3 □	M4□	
		P值			P2 □	P3□	P4□	
		大气	E1□		E2□		E3 □	
环境	敏感程度	地表水	E1		E2□		E3 □	
		地下水	E1		E2□		E3 🗆	
	风险潜势	IV ⁺ □			III□	II 🗆	I 🗵	
评	价等级		一级□		二级口	三级口	简单分析☑	
	物质危险性		有毒	有害☑			易爆团	
风险识别	环境风险类型		•	雨 🗸			伴生/次生污染物排 女☑	
	影响途径		大气团				地下水図	
事故	影响分析		设定方法口		计算法□	经验估算法□	其他估算法□	
			预测模型		SLAB AFTOX 其他			
	大气	3	预测结果		大气毒性终点浓度-1 最大影响范围 m			
风险预测					大气毒性终点浓度-2 最大影响范围 m			
与评价	地表水				竟敏感目标,到			
	地下水	下游厂区边界到达时间 h						
	.3,7,4		l. 📤 đạ La V		竟敏感目标,至		无法	
							系统;终止风险事	
手上员	以 及去世安						措施等;防止事故	
里 思 风	险防范措施						有害物质泄漏风险 专入外环境的途径、	
		权人的区域作	上地則別答:		安宝坦岛,切断 设置暂存设施。		タハグが児的述任、	
		 口亜亚枚海 ²	字名而字今:				实环境风险防范措	
评价纟	吉论与建议					床、女王自埋,格 5响控制在可以接 ⁹		
		<u>, 22, 75.</u> 注:	"口"为勾			· 1412-74 1 7 71X		

建设项目环评审批基础信息表 功表单位(指示): - 推行市政市区新市成市金利高标准等可 填書人・ロート・ 项目经办人(签字): 项目名称 21.17年17.4区基础基在企业基在限金司等产业的并20.4年经过项目 (M. CONTR. | 1919 | 1906 | 2021 | 11 NOVEM | 项目代码" **建设内容、规模** ILI TWEE ASIA WWW.76295 0 400 建设施点 项目建设周期(月) 3.0 计规学工时间 2020 (101) 纤维影响评价行业类别 66. 有色金属铁造 别目投产时间 2020/4/12 H 建设性质 新住(往往) 国民经济行业类型" CONG自己全球保险 建设 现有工程排行许可证编号 项目 31 展員申请義景 直升明日 (数、扩出项目) 规划开护开展情况 不當用號 规划环伊文件名 E 规划环评审宣机关 32 规划环开华亚意思文号 1 建设地水中心坐标" 经度 113.154106 纬度 22,554455 环境运动评价文件类别 特别证明机会表 (事故性工程) 建设地点坐标(统性工程) 起点格度 起点样皮 解查局限 界点纯度 工程长度(千米) 非视度 (万元) 100:00 环保投赁 (万元) 所占比例 (%) 117月1日内区防疗成五金同品有限公 单位出程 验人代表 常形状 单位名称 进了西京40年代有限2世 IRREPORT CHARGE 正书原母 建设 统一社会信用代码 评价 914307D89242H93E 技术负责人 场点器 环评文件项目负责人 联系电话 (组织机构代码) 单位 单位 1.口市江海区 电滤路296号9等量层 透明地址 **美国联系的中国共和国共和国共和国共和国共和** 联系电话 159998E3000 超机地址 现有工程 本工程 **中国和** (已证:日证:似建成界整变更) (己建+在章) 私建或荷墨变更) 污染物 排放方式 ①实际释放量 ②许可排放量 **①预购排放量** ④·以新律老·削減量 ⑤区域平初替代丰工社 ⑥預調排放总量 ①特放增減量 (利年) (明年) (理律) 削減量 (吨/年) (略年) (spigs) 废水量(万吨/年) 0.000 0.000 0.010 0.000 D One 0.010 0.010 〇石40歳 COD. 0.000 0.000 0.021 0.000 0.000 0.021 9.621 ●同時計估。 2 市战管科 **热**物 册 度水 MCBS. 0.000 0.000 0.001 0.000 0.000 0.001 日本中人工主が水を付 0.001 品牌 0,000 0.000 0,000 0.000 0.000 0.000 0.000 Onserve - enserv_ 品製 0.000 0.000 0.000 0.000 放量 0.000 0.000 0.000 後气量 (万标立方米/年) 0.000 0.000 6000,000 0.080 0.000 6000,000 6000,000 二氧化碳 0,000 0.000 0.000 0.000 0.000 0.000 0.000 版气 似状化物 0.000 8.000 0.000 0,000 0.000 8,888 0.000 100102-901 0.000 0.000 0.033 0.000 0.000 0.033 0.033 异支性有机物 0.000 0.061 0,000 0.061 0.061 影响及主要措施 主要保护对象 占用面积 老额 鉄器 工程影响情况 基面占用 生态的学品店 (目録) (公理) 项目涉及保护区 自然保护区 DEST DAM DIRECTOR 与风景名胜区的 **状席水水原保护区 (地東)** ONLOWE OHE OFF A 情况 饮用水水漏保护区 (地下) 风景名胜区

B1 4. HRD 0 3/70 東京東京 104 - 毎日代日

^{2.} Williams, Responsible to Ascent 4754-2001)

LARMING WALLSON CORP. COR.

^{4.} KINSTITUTE THE ETTOETH STATE BURNING

to memorante mesonareis