建设项目环境影响报告表

(污染影响类)

建设单位(盖章):广东东本新材料科技有限公司

编制日期: 2024年8月

中华人民共和国生态环境部制

编制单位和编制人员情况表

项目编号		26ava j		
建设项目名称 广东万木新材料科技有限公司研发楼研发实验室扩建项目				扩建项目
建设项目类别 45-098专业实验室、研发(试验)基地				
环境影响评价文件类	EN	报告表		
一、建设单位情况		(1)	支有 個	
単位名称 (養章)		广东万木新才料科技	TO CONTRACT OF THE PARTY OF THE	
克一社会信用代码		914407045517131/287	IN INDE	
去定代表人 (答章)			87 11110	
主要负责人(鉴字)				
直接负责的主管人员	(签字)	74-1-0		
二、编制单位情况		公城村 五	1	
草位名称 (蓋章)				
克一社会信用代码				
三、编制人员情况		anni.		
1.编制主持人				
姓名	职业	资格证书管理号	信用编号	鉴字
2 主要编制人员				
200000	- 1	要编写内容	信用编号	签字

承诺书

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政 许可法》、《建设项目环境影响评价资质管理办法》、《环境影响评价公 众参与办法》,特对报批<u>广东万木新材料科技有限公司研发楼研发实</u> 验室扩建项目 环境影响评价文件作出如下承诺:

- 1、我们承诺对提交的项目环境影响评价文件及相关材料(包括但不限于建设项目内容、建设规模、环境质量现状调查、相关检测数据、公众参与调查结果)真实性负责;如违反上述事项,在环境影响评价工作中不负责任或弄虚作假等致使环境影响评价文件失实,我们将承担由此引起的一切责任。
- 2、我们承诺提交的环境影响评价文件报批稿已按照技术评估的要求修改完善,本报批稿的内容与经技术评估同意报批的版本内容完全一致,我们将承担由此引起的一切责任。
- 3、在项目施工期和营运期,严格按照环境影响评价文件及批复要求落实各项污染防治和风险事故防范措施,如因措施不当引起的环境影响或环境事故责任由建设单位承担。
- 4、我们承诺廉洁自律,严格按照法定条件和程序办理项目申请手续,绝不以任何不正当手段干扰项目评估及审批管理人员,以保证项目根据有政性。

注:本承诺书原件交环保审批部门,承诺单位可保留复印件。

声明

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政 许可法》、《建设项目环境影响评价政府信息公开指南(试行)》(环办 【2013】103号)、《环境影响评价公众参与办法》,特对环境影响评 价文件(公开版)作出如下声明;

我单位提供的<u>广东万木新材料科技有限公司研发楼研发实验室</u> <u>扩建项目</u>(公开版)(项目环评文件名称)不含国家秘密、商业秘密 和个人隐私,同意按照相关规定予以公开。

本声明书原件交环保审批部门, 声明单位刻保留复印件

建设项目环境影响报告书(表) 编制情况承诺书

本单位(统一社会
信用代码
符合《建设项目环境影响报告书(表)编制监督管理办法》第
九条第一款规定,无该条第三款所列情形, 不属于 (属于/
不属于) 该条第二款所列单位; 本次在环境影响评价信用平台
提交的由本单位主持编制的广东万木新材料科技有限公司
研发楼研发实验室扩建项目 项目环境影响报告书(表)基本
情况信息真实准确、完整有效,不涉及国家秘密;该项目环境
人员均为本单位全职人员:本单位和上述编制人员未被列入

人员均为本单位全职人员;本单位和上述编制人员未被列入 《建设项目环境影响报告书(表)编制监督管理办法》规定的 限期整改名单、环境影响评价失信"黑名单"。

一、建设项目基本情况

建设项目名称	广东万木新材料科技有限公司研发楼研发实验室扩建项目					
项目代码	无					
建设单位联系人						
建设地点			联系方式 喜新区喜新西路 /	20 -		
地理坐标					度 33 分 42.023 秒)	
地连坐你		(了 <u></u>		<u>33</u>	; ; 戻 00 <i>‡</i> ;
国民经济 行业类别	M7320 工程和技术研究和 试验发展		建设项目		业实验室、研发(试验)基地其他(不产生实验废气、废水、危险 废物的除外)	
如涉及改建和扩 建,则两个同时			建设项目申报情形		☑首次申报项目 □不予批准后再次申报 □超五年重新审核项目 □重大变动重新报批项	
项目审批(核准/ 备案)部门(选 填)	·		项目审批(核准 备案)文号(选均		无	
总投资(万元)		793.5	环保投资(万元)	48	
环保投资占比 (%)		6.05	施工工期	2 个月		
是否开工建设	☑否 □是		用地(用海) 面积(m²)	0		
	表1-1 本项目专项评价设置识别表					
	专项评 价类别	设置			本项目相关情况	判定 结果
	大气	气且厂界外50	毒有害污染物、 芘、氰化物、氯 0米范围内有环 标的建设项目	染烃	本项目排放的大气污 物为甲苯、非甲烷总 、TVOC,不涉及技 术指南规定的有毒有 害废气污染物	不需要设置
专项评价设置 情况	项评价设置 地表水 (槽罐车外送情况 外);新增废		这直排建设项目 污水处理厂的除 水直排的污水集 之理厂		本项目位于江海污水 理厂纳污范围,属于 间接排放。	不需要设置
	环境风 险		然易爆危险物质 界量的建设项目	l	分析,本项目风险物 质存储量总计未超过 临界量	不需要设置
	生态	要水生生物的饵场、越冬场	0米范围内有重 自然产卵场、索 和洄游通道的新 污染类建设项目		本项目不涉及直接从 河道取水	不需要设置
	海洋		污染物的海洋工 设项目	4	本项目污水排放不涉 及海洋	不需要 设置

规划情况	无
规划环境影响 评价情况	2007年3月14日,广东省发改委、省外经贸厅、省国土资源厅、省建设厅、省科学技术厅和省环保局联合发布了《关于印发广东省已通过国家审核公告的各类开发区名单的通知》(粤发改区域〔2007〕335号),核准广东江门高新技术产业园区规划面积为12.21平方公里,开发区四至范围为:东至西江,南至江中高速公路,西至金星路,北至五邑路。主导产业为电子、机械、生物制药。该园区已经于2008年取得了原广东省环境保护局的环评批复(《关于广东江门高新技术产业园区环境影响报告书的审查意见》(粤环审[2008]374号)。
	一、 规划符合性分析 高新园区准入条件:
	①本园区工业项目为机电与装备制造、新材料、新能源与节能、电子产品、生物技术与制药、软件产业等,属于一类和二类工业,入园工业项目必须符合
	国家、广东省和江门市的有关产业政策,避免污染严重和低附加值的企业入园。 ②企业采用行业内的最新清洁生产技术,建立了较为完善的环境管理体
	系,有明确的环境管理目标和指标,并能在生产过程中执行。企业有明确的环
	境改善目标,要求企业在入园后的3~5年内获得ISO14000认证。
	③入园企业不得使用燃煤或重质燃油等作为燃料,生产过程和员工生活过程必须使用清洁能源。
	④进驻高新区企业的建设必须符合园区规划,并进行必要的绿化与环境建
规划及规划环 境影响评价符	设,企业自身的环保设施必须完善和有效运行。
合性分析	⑤对进入园区的企业,禁止引进国家明令淘汰的、对环境和资源均造成较
	大危害的落后工艺和落后设备。高新园区的工业废水和生活污水将纳入新建的
	江海污水处理厂进行处理。通过江海污水处理厂集中处理排放后,虽然尾水排
	放口附近水域有限范围内的水质浓度有所上升,但由于污水集中处理,区域污
	染负荷得到削减,纳污范围外排的污染负荷总量减少,混合区外水域水质浓度
	将降低,因此,可减轻麻园河、马鬃沙涌水质污染,缓解高新区发展对麻园河 等河流水环境造成的压力。广东江门市高新技术园区完全建成后,其新增外排
	等例流水环境追风的压力。/ 宋在门间向新汉水四区元王建风后,兵新增外部 大气污染物对园区及周边区域环境空气质量影响轻微,尚在可接受范围之内。
	本项目位于高新技术产业园区内,主要对有机硅树脂生产工艺进行研发、
	对LED封装胶、环氧塑封材料产品进行化学检验和物理检验,项目的建设符合
	国家、广东省和江门市的有关产业政策。企业采用行业内的最新清洁生产技术,
	建立了较为完善的环境管理体系,本项目使用电能、天然气和醇基燃料作为能

源;项目符合园区规划,配套环保设施完善和有效运行;企业不使用国家明令淘汰的、对环境和资源均造成较大危害的落后工艺和落后设备,本项目生活污水经三级化粪池处理后排入江海污水处理厂进行深度处理。生产废水经自建污水处理设施预处理后排入江海污水处理厂进行深度处理。

二、规划环境影响评价及其审查意见符合性分析

根据所在工业园区规划环评《广东江门高新技术产业园区环境影响报告书》及其批复,其相符性分析如下:

表 1-2 本项目与规划环评的相符性分析表

日4. 五十八月 7. 八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八		上ロ ケケ し む
具体要求内容	相符性分析	相符性
电子、机械、家具等企业应采取有效的酸性气体、有机废气和粉尘收集处理措施,	项目有机废气经收集 进入二级活性炭吸附	相符
减少工艺废气排放量,控制无组织排放。运行前,现有企业应配套生产废水和生活污水处理设施,废水经处理达标后方可外排。污水处理厂建成投入运行后,园区企业生产废水和生活污水经预处理达到污水处理厂接管标准后送污水处理厂集中处理,达到《水污染物排放限值》(DB44/26-2001)第二时段一级标准和《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准B标准中严的指标后排入马鬃沙河,其中,含第一类污染物的生产废水须在车间单独处理达到《水污染物排放限值》(DB44/26-2001)第一类污染物最高允许排放浓度限值。	装置处理后达标排放。 本项目生活污水经三 级化粪池处理后排入 江海污水处理厂进行 深度处理。生产废水经 自建污水处理设施预 处理后排入江海污水 处理厂进行深度处理。	相符
采取吸声、隔声、消声和减振等综合降噪措施,确保各企业厂界和园区边界噪声符合《工业企业厂界噪声标准》(GB12348-90)相应标准的要求。	本项目对生产噪声采取隔声、消声和减振等综合降噪措施,可确保项目厂界和园区边界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准要求。	相符
建立健全产业园固体废弃物管理制度,加强区内企业固体废弃物产生、利用、收集、贮存、处置等环节的管理;按照分类收集和综合利用的原则进一步完善产业园固体废弃物分类收集和处理系统,提高固体废弃物的综合利用率。危险废物的污染防治须严格执行国家和省对危险废物管理的有关规定,送有资质的单位处理处置。	本项目对产生的固体 废弃物实现分类收集, 其中,生活垃圾交由环 卫部门统一清运处理; 一般工业固废交由物 资回收方回收处置;危 险废物交由有资质单 位处理。	相符
根据产业园产业规划和清洁生产要求,严格控制新引入产业类别,以无污染或轻污染的一类工业为主导产业,不得引入水污染型项目及三类工业项目。并加大对已入驻企业环保问题的整改力度,对不符合产业规划要求的项目,合同期满后不再续	本项目为研发实验室 扩建项目,符合符合产 业规划要求。	相符

约,逐步调整出产业园,已投产的超标排 污企业须在 2008 年底前治理达标,否则 停产治理或关闭。		
电子、家具等企业应设置不少于 100 米的 卫生防护距离。卫生防护距离内不得规划 新建居民点、办公楼和学校等环境敏感目 标,已有村庄、居民点不符合卫生防护距 离要求的必须通过调整园区布局或落实 搬迁安置措施妥善处理、解决。	项目选址 100 米范围 内无环境敏感目标。	相符

1、"三线一单"相符性分析

(1) 生态保护红线:项目所在地位于江门市江海区高新区高新西路20号研发楼(4#车间),根据江门市环境管控单元图(见附图11),本项目所在位置属于江门高新技术产业开发区管控单元(环境管控单元编码为ZH44070420001)。本项目与《江门市人民政府关于印发江门市"三线一单"生态环境分区管控方案的通知》(江府〔2021〕9号)的相符性分析详见下表。

表 1-2 本项目与(江府(2021)9号)的相符性分析表

	要求	相符性分析	相符性
全市	区域布局管控要求:环境质量不达标区域,新建项目需符合区域环境质量改善要求。禁止新建、扩建燃煤燃油火电机组和企业自备电站,推进现有服役期满及落后老旧的燃煤火电机组有序退出;不再新建燃煤锅炉,逐步淘汰生物质锅炉、集中供热管网覆盖区域内的分散供热锅炉;禁止新建、扩建水泥、平板玻璃、化学制浆、生皮制革以及国家规划外的钢铁、原油加工乙烯生产、造纸、除特种陶瓷以外的陶瓷、有色金属冶炼等项目。大力推进摩托车配件、红木家具行业共性工厂建设。重点行业新建涉 VOCs 排放的工业企业原则上应入园进区,加快谋划建设新的专业园区。	本项 发展 工工 项 发展 工工 证 现 无 不 不 不 不 不 正 不 正 正 正 正 正 正 正 正 正 正 正 正	符合
总体管控要求	能源资源利用要求:推动煤电清洁高效利用, 合理发展气电,拓宽天然气供应渠道,完善天 然气储备体系,提高天然气利用水平,逐步提 高可再生能源与低碳清洁能源比例,建立现代 化能源体系。新建、扩建"两高"项目应采用 先进适用的工艺技术和装备,单位产品物耗、 能耗、水耗等达到清洁生产先进水平。	项目使用能 源为电能。 本项目不属 于"两高" 项目。	符合
	污染物排放管控要求:实施重点污染物(包括化学需氧量、氨氮、氮氧化物及挥发性有机物(VOCs)等)总量控制。重点推进化工、工业涂装、印刷、制鞋、电子制造等重点行业,以及机动车和油品储运销等领域 VOCs 减排;重点加大活性强的芳香烃、烯烃、炔烃、醛类、酮类等 VOCs 关键活性组分减排。涉 VOCs 重点行业逐步淘汰光氧化、光催化、低温等离子等低效治理设施,鼓励企业采用多种技术的组合工艺,提高 VOCs 治理效率。新建、改建、	本项点是 国实施 基量目 是是是 基于有 是是 是是 是是 是是 是是 是是 是是 是是 是是 是是 是是 是是 是是	符合

其他符合性分 析

	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
	扩建"两高"项目须满足重点污染物排放总量 控制。		
	区域布局管控: 1-1.【水/禁止类】园区毗邻西江,禁止在西江 干流最高水位线水平外延 500 米范围内新建、 扩建废弃物堆放场和处理场。 1-2.【产业/综合类】应在生态空间明确的基础 上,结合环境质量目标及环境风险防范要求, 对规划提出的生产空间、生活空间布局的环境 合理性进行论证,基于环境影响的范围和程 度,对生产空间和生活空间布局提出优化调整 建议,避免或减缓生产活动对人居环境和人群 健康的不利影响。 1-3.【能源/综合类】园区集中供热,集中供热 范围内淘汰现有企业锅炉,不得自建分散供热 锅炉。	本项目不在 西江干流最 高水位线水 平外延 500 米范围内, 项目使用能 源为电能。	符合
高新技术开发区管控单元	能源资源利用: 2-1.【产业/鼓励引导类】园区内新引进有清洁生产审核标准的行业,项目清洁生产水平应达到国内先进水平。 2-2.【土地资源/鼓励引导类】入园项目投资强度应符合有关规定。 2-3.【能源/禁止类】禁止使用高污染燃料。 2-4.【水资源/综合】2022年前,年用水量12万立方米及以上的工业企业用水水平达到用水定额先进标准。 2-5.【水资源/综合】对纳入取水许可管理的单位和公共供水管网内月均用水量5000立方米以上的非农业用水单位实行计划用水监督管理。	项目使用能。 源项目电不能。 本项高,生环, 目,循环少量。 和,水量。	符合
准入清单	污染物排放管控: 3-1.【产业/综合类】园区各项污染物排放总量不得突破规划环评核定的污染物排放总量管控要求。 3-2.【水/限制类】新建、改建、扩建配套电镀建设项目实行主要水污染物排放等量替代。 3-3.【大气/限制类】火电、化工等行业执行大气污染物特别排放限值。 3-4.【大气/限制类】加强涉 VOCs项目生产、输送、进出料等环节无组织废气的收集和有效处理,强化有组织废气综合治理;新建涉 VOCs项目实施 VOCs 排放两倍削减替代,推广采用低 VOCs 原辅材料。 3-5.【固废/综合类】产生固体废物(含危险废物)的企业须配套建设符合规范且满足需求的贮存场所,固体废物(含危险废物)贮存、转移过程中应配套防扬散、防流失、防渗漏及其它防止污染环境的措施。	本研发废达; 固和 仓危 移协议。 大概 一年	符合
	环境风险防控: 4-1.【风险/综合类】构建企业、园区和生态环	企业按照国 家有关规定	符合

境部门三级环境风险防控联动体系,增强园区 风险防控能力,开展环境风险预警预报。

- 4-2.【风险/综合类】生产、使用、储存危险物质或涉及危险工艺系统的企业应配套有效的风险防范措施,并按规定编制环境风险应急预案,防止因渗漏污染地下水、土壤,以及因事故废水直排污染地表水体。
- 4-3.【土壤/限制类】土地用途变更为住宅、公共管理与公共服务用地时,变更前应当按照规定进行土壤污染状况调查。重度污染农用地转为城镇建设用地的,由所在地县级人民政府负责组织开展调查评估。
- 4-4.【土壤/综合类】重点监管企业应在有土壤 风险位置设置防腐蚀、防泄漏设施和泄漏监测 装置,依法开展自行监测、隐患排查和周边监 测。

制定突发环境事件应急预案,报生态环境主管部门和军。

- (2) 环境质量底线:本项目所在区域声环境符合相应质量标准要求;环境空气质量不达标,江门市已印发《江门市环境空气质量限期达标规划(2018-2020年)》,完善环境管理政策等大气污染防治强化措施,争取区域内环境空气质量全面达标;项目纳污水体麻园河达到《地表水环境量标准》(GB3838-2002)中的IV类标准。本项目现有已建成厂房进行,对周围边环境影响不明显;本项目运营后对大气环境、水环境质量影响较小,可符合环境质量底线要求。
- (3) **资源利用上线:** 项目营运期用电及用水量不会超过区域内水、电负荷。
- **(4) 生态环境准入清单:** 本项目符合国家及地方产业政策,不属于环境功能区划中的负面清单项目。

2、产业政策符合性分析

本项目主要从事研究和试验发展,对照《产业结构调整指导目录》(2024年本),本项目生产不属于鼓励类、限制类及淘汰类范围。对照《市场准入负面清单(2020年版)》,本项目的建设符合有关法律、法规和政策规定。

3、选址用地合理性分析

本项目选址于江门市江海区高新区高新西路 20 号研发楼(4#车间),根据土地证明(见附件 3)和江门市总体规划图(见附图 5),土地性质为工业用地,项目选址基本合理。

4、环境功能区划相符性分析

本项目选址不在饮用水源保护区范围内,不在风景名胜区、自然保护区内。 本项目距离东面西江水道为 5650m(本项目与饮用水源保护区相对位置见附图 9),西江水道为饮用水源二级保护区,执行《地表水环境质量标准》 (GB3838-2002)的II类标准。根据《江门市人民政府关于重新上报调整江门市部分饮用水水源保护区划的请示》(江府报(2018)42号)和和《广东省人民政府关于调整江门市部分饮用水水源保护区的批复》(粤府函(2019)273号),其陆域保护范围为:相应二级保护区水域两岸河堤外坡脚向外纵深 100米陆域范围,本项目不在西江水道二级水源保护区的陆域范围内。项目纳污水体麻园河执行《地表水环境质量标准》(GB3838-2002)IV类标准;大气环境属于《江门市环境空气质量功能区划调整方案(2024年修订)中的二类环境空气质量功能区;声环境属《江门市声环境功能区划》3类区,故本项目与周边环境功能区划相适应,符合相关法律法规的要求,本项目的选址具有环境可行性。

5、相关环境保护规划及政策相符性分析详见下表

(1) 与《广东省挥发性有机物(VOCs)整治与减排工作方案(2018-2020年)》、《江门市挥发性有机物(VOCs)整治与减排工作方案(2018~2020年)》的相符性分析:

表1-3 与《减排工作方案》的相符性分析

政策要求	本项目情况	相符性
严格控制新增污染物排放量。严格限制	本项目位于江门高新技	
化工、包装印刷、工业涂装等高 VOCs	术产业开发区,产生的	符合
排放建设项目。重点行业新建涉 VOCs	废气经过二级活性炭处	付合
排放的工业企业原则上应入园进区。	理,废气排放量较少。	

(2) 与《广东省打赢蓝天保卫战实施方案(2018-2020年)》、《江门市 打赢蓝天保卫战实施方案(2019-2020年)》的相符性分析:

表1-4 与《蓝天保卫战》的相符性分析

	- 1 - 1	
政策要求	本项目情况	相符性
重点推广使用低 VOCs 含量、低反应活性的原 辅材料和产品,到 2020 年,印刷、家具制造、工业涂装重点工业企业的低毒、低(无) VOCs 含量、高固份原辅材料使用比例大幅提升。	本项目使用的原料 VOCs 含量低。	符合

(3)与关于印发《"十三五"挥发性有机物污染防治工作方案》的通知 (环大气(2017)121号)的相符性分析:

表1-5 与(环大气(2017)121号)的相符性分析

政策要求	本项目情况	相符性
对新、改、扩建涉 VOCs 排放项目全面	本项目使用的原料	
加强源头控制,无论直排是否达标,全	VOCs 含量低,产生的	符合
部应按照规定安装、使用污染防治设施,	废气经过二级活性炭处	1万亩
并使用低(无)VOCs含量的原辅材料。	理,废气排放量较少。	

(4)与《广东省环境保护"十三五"规划》((粤环[2016]51号))的相符性分析:

表1-6 与"十三五"规划的相符性分析

* * * * * * * * * * * * * * * * * * * *		
政策要求	本项目情况	相符性
油墨、粘胶剂、有机溶剂等挥发性原辅	本项目的原料密封贮存,	相符

材料应密封贮藏,沸点较低的有机物料 产生的废气采用"二级活 应配置氮封装置。强化 VOCs 排放达标 | 性炭吸附"的工艺处置, 治理工作,烘干车间必须安装吸附装置 废气排放量较少。 对有机溶剂进行回收。

(5) 与《2020年挥发性有机物治理攻坚方案》(环大气〔2020〕33号) 的相符性分析:

表1-7 与《治理攻坚方案》的相符性分析

政策要求	本项目情况	相符性
生产设施防腐防水防锈涂装应避开夏季或用低 VOCs 含量涂料。使用的原辅材料 VOCs 含量均低 于 10%的工序,可不要求采取无组织排放收集和 处理措施。	本项目使用的 原料 VOCs 含 量低。	相符
企业对照标准要求开展含 VOCs 物料(包括含 VOCs 原辅材料、含 VOCs 产品、含 VOCs 废料以 及有机聚合物材料等)储存、转移和输送、设备与管线组件泄漏、敞开液面逸散以及工艺过程等无组 织排放环节排查整治	本项目定期开 展有机废气无 组织排放环节 排查整治。	相符
聚焦治污设施"三率",提升综合治理效率:按照 "应收尽收"的原则提升废气收集率。推动取消废 气排放系统旁路,因安全生产等原因必须保留的, 要通过安装自动监控设施等方式加强监管。将无组 织排放转变为有组织排放进行控制,优先采用密闭 设备、在密闭空间中操作或采用全密闭集气罩收集 方式;对于采用局部集气罩的,应根据废气排放特 点合理选择收集点位,距集气罩开口面最远处的 VOCs 无组织排放位置,控制风速不低于 0.3 米/ 秒。按照与生产设备"同启同停"的原则提升治理 设施运行率。	本气 集然: 65%; 低水 1 65%; 化水	相符

(6)与《挥发性有机物无组织排放控制标准》(GB 37822-2019)的相符 性分析:

表1-8 与 (GB 37822-2019) 的相符性分析

政策要求	本项目情况	相符性
VOCs 物料应储存于密闭的容器、包装袋、储罐、储库、料仓中; 盛装 VOCs 物料的容器或包装应存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。盛装 VOCs 物料的容器或包装袋在非取用状态时应加盖、封口,保持密闭。	本项目原料存于密 闭容器内,并放置 在有雨棚、遮阳和 防渗设施的专用原 料区;非取用是保 持密闭状态。	相符
液态 VOCs 物料应采用密闭管道输送。采用非管道输送方式转移液态 VOCs 物料时,应采用密闭容器、罐车。	本项目采用密闭容 器盛装原料。	相符
VOCs 质量占比大于等于 10%的含 VOCs 产品,其使用过程应采用密闭设备或密闭空间内操作,废气应排至 VOCs 废气收集处理系统;无法密闭的,应采取局部气体收集措施,废气应排至 VOCs 废气收集处理系统。	本项目有机废气经 收集后排至"二级 活性炭吸附"设施 处理。	相符
企业应建立台账,记录含 VOCs 原辅材料和	企业拟建立管理台	相符

含 VOCs 产品的名称、使用量、回收量、废 弃量、去向以及 VOCs 含量等信息。台账保 存期限不少于 3 年。	账,记录含 VOCs 原料的相关信息。	
VOCs 废气收集处理系统应与生产工艺设备 同步运行。VOCs 废气收集处理系统发生故 障或检修时,对应的生产工艺设备应停止运 行,待检修完毕后同步投入使用;生产工艺 设备不能停止运行或不能及时停止运行的, 应设置废气应急处理设施或采取其他替代措 施。	本项目 VOCs 废气 收集处理系统与生 产工艺设备同步运 行。	相符
废气收集系统的输送管道应密闭。废气收集系统应在负压下运行,若处于正压状态,应对输送管道组件的密封点进行泄漏检测,泄漏检测值不应超过 500μmol/mol,亦不应有感官可察觉泄漏。泄漏检测频次、修复与记录的要求按照第 8 章规定执行。	本项目废气收集系 统的输送管道保持 密闭状态。	相符
VOCs 废气收集处理系统污染物排放应符合 GB16297 或相关行业排放标准的规定。	本项目 VOCs 废气 排放符合现行环保 政策要求。	相符
当执行不同排放控制要求的废气合并排气筒 排放时,应在废气混合前进行监测,并执行 相应的排放控制要求;若可选择的监控位置 只能对混合后的废气进行监测,则应按各排 放控制要求中最严格的规定执行。	本项目拟设定监测 计划。	相符

(7) 与《广东省大气污染防治条例》(广东省第十三届人民代表大会常务委员会公告(第20号))的相符性分析:

表1-9 与《广东省大气污染防治条例》的相符性分析

	IN VENT BLUDGE WEATHER	
政策要求	本项目情况	相符性
珠江三角洲区域禁止新建、扩建燃煤燃油 火电机组或者企业燃煤燃油自备电站。	本项目不设燃煤燃油 火电机组或者企业燃 煤燃油自备电站。	相符
新建、改建、扩建排放挥发性有机物的建设项目,应当使用污染防治先进可行技术。	本项目有机废气经收 集后排至"二级活性炭 吸附"设施处理。	相符
工业涂装企业应当使用低挥发性有机物含量的涂料,并建立台账,如实记录生产原料、辅料的使用量、废弃量、去向以及挥发性有机物含量并向县级以上人民政府生态环境主管部门申报。台账保存期限不少于三年。	企业拟建立管理台账, 记录含 VOCs 原料的 相关信息。	相符
严格控制新建、扩建排放恶臭污染物的工 业类建设项目。	本项目废气排放量较 少。	相符

(8) 与《广东省水污染防治条例》的相符性分析:

表1-10 与《广东省水污染防治条例》的相符性分析

政策要求	本项目情况	相符性
县级以上人民政府应当根据国土空间规划	本项目生活污水和	
和本行政区域的资源环境承载能力与水环	生产废水经处理达	相符
境质量目标等要求, 合理规划工业布局, 规	标后通过市政管网	

范工业集聚区及其污水集中处理设施建设, 引导工业企业入驻工业集聚区。严格控制高	排入江海区污水处 理厂处理,尾水排入	
污染项目的建设,鼓励和支持无污染或者轻 污染产业的发展。	麻园河。	
排放工业废水的企业应当采取有效措施,收集和处理产生的全部生产废水,防止污染水环境。未依法领取污水排入排水管网许可证的,不得直接向生活污水管网与处理系统排放工业废水。含有毒有害水污染物的工业废水应当分类收集和处理,不得稀释排放。	本项目生活污水和 生产废水经处理达 标后通过市政管网 排入江海区污水处 理厂处理,尾水排入 麻园河。	相符
企业应当采用原材料利用效率高、污染物排放量少的清洁工艺,并加强管理,按照规定实施清洁生产审核,从源头上减少水污染物的产生。	本项目生活污水和 生产废水经处理达 标后通过市政管网 排入江海区污水处 理厂处理,尾水排入 麻园河。	相符

二、建设项目工程分析

广东万木新材料科技有限公司成立于 2002 年 02 月,位于江门市江海区高新区高新西路 20 号,占地面积为 20676.8m²,总建筑面积约 11000m²。

广东万木新材料科技有限公司于2019年9月委托广东顺德环境科学研究院有限公司编制了《广东万木新材料科技有限公司年产 LED 封装胶 2700 吨建设项目环境影响报告书》,并于2019年10月10日取得《关于广东万木新材料科技有限公司年产 LED 封装胶 2700 吨建设项目环境影响报告书的批复》(江江环审[2019]38号),项目审批规模为年产 LED 封装胶 2700 吨项目分两期建设,其中一期年产 LED 封装胶 1200 吨,二期年产 LED 封装胶 1500 吨。项目已建一期工程,于2021年4月完成了自主验收,形成《广东万木新材料科技有限公司年产 LED 封装胶 2700 吨迁扩建项目一期工程竣工环境保护自主验收意见》。项目二期工程未建。

广东万木新材料科技有限公司于 2022 年 6 月 29 日取得《关于广东万木新材料科技有限公司年产环氧塑封材料 5000 吨扩建项目环境影响报告表的批复》(江江环审[2022]71 号),项目审批规模为年产环氧塑封材料 5000 吨,该项目未进行验收。

原有项目为排污许可重点管理类别,2020年8月进行了首次申请,2021年2月进行了变更登记,于2022年09月进行了延续登记,其排污许可证编号为:914407045517131387001Q。

现企业根据当前市场发展需要,企业拟在原厂区扩建一个研发楼研发实验室,无需新增建设用地和厂房。本次扩建新增实验设备,对有机硅树脂生产工艺进行研发、对 LED 封装胶、环氧塑封材料产品进行化学检验和物理检验。

根据《中华人民共和国环境影响评价法》(2018 年 12 月 29 日修订)、《国务院关于修改〈建设项目环境保护管理条例〉的决定》(国务院令第 682 号)等法律法规的规定,建设对环境有影响的项目必须进行环境影响评价。参照《建设项目环境影响评价分类管理名录(2021 年版)》和《广东省豁免环境影响评价手续办理的建设项目名录(2020 年版)》,本项目属于"四十五、研究和试验发展--98、专业实验室、研发(试验)基地--其他(不产生实验废气、废水、危险废物的除外)"项目,需编制"环境影响报告表"。广东万木新材料科技有限公司委托我单位承担此环境影响报告表的编制工作。

1、工程组成

表 2-1 工程组成表

工程		具体内容					
上性 类别	名称	现有	工程	本项目	总体工程		
矢加		审批情况	验收情况	平坝日 	□ 本件工作		
	厂房(2#车 间)	厂房1层,占地			厂房1层,占地		
		面积为 3751.56	面积为 3751.56		面积为 3751.56		
主体		m ² ,用于硅树脂	m ² ,用于硅树脂	不涉及	m ² ,用于硅树脂		
工程		生产、LED 封装	生产、LED 封装		生产、LED 封装		
		胶分装	胶分装		胶分装		
	厂房(3#车	厂房4层,占地	未验收	不涉及	厂房4层,占地		

		间)	面积 1467.9m²,			面积 1467.9m²,
		1月ノ				
			5864.6m²,用于			5864.6㎡, 用于
			环氧塑封材料			环氧塑封材料
			生产			生产
			二期研发楼(4	上 验收时为保安	在研发楼首层	研发楼(4层),
			层),占地面积	楼,二期预留为	和二层放置环	占地面积 920.4
		研发楼(4#	920.4m ² ,建筑面 积为 3748.36	研发楼(4层),	氧塑封材料、有 机硅树脂研发	m ² ,建筑面积为
		车间)		占地面积 920.4	机硅树脂研及 设备和实验设	3748.36m²,主要
			目研发试验(未	m²,建筑面积为	备,三层、四层	用于产品研发
			建成)	3748.36m ²	空置	试验
		配电房	1层,占地面积	1层,占地面积	依托现有工程	1层,占地面积
		FL 'E//	36m ²	36m ²	1000日工作	36m ²
			2层,占地面积	2层,占地面积		2层,占地面积
		办公楼	600m², 建筑面	600m², 建筑面	依托现有工程	600m², 建筑面 积
	行政		积 1200m²	积 1200m²		1200m ²
	办公		3层,占地面积	3层,占地面积		3层,占地面积
			306m ² ,建筑面	306m ² ,建筑面		306m², 建筑面
		宿舍	积 918m ² ,宿舍	积 918m ² ,宿舍	依托现有工程	积 918
			内含食堂	内含食堂		m ² ,宿舍内含食 堂
		4小火 10 户	1层,占地面积	1层,占地面积	7 MF 77	1层,占地面积
		制冷机房	64m ²	64m ²	不涉及	64m ²
		冷却塔区	占地面积 120m²	占地面积 120m²	不涉及	占地面积 120m²
			位于 3#车间北			位于 3#车间北 侧, 1 层, 占地
		空压机房	侧,1层,占地	未验收	不涉及	一
	辅助		面积为 18m ²			$18m^2$
	工程	冷冻水房	位于新建 3#车			位于新建 3#车
			间北侧,1层,	未验收	不涉及	间北侧,1层,
			占地面积为 18 2	,	, , , ,	占地面积为 18 m ²
		LET IN A	m ² 1 层,占地面积			1层,占地面积
		锅炉房	183.6m ²	183.6m ²	不涉及	183.6m ²
		气瓶站	1层,占地面积	1层,占地面积	不涉及	1层,占地面积
		4/1mcH	63.7m ²	63.7m ²	100	63.7m ²
			市政电网供电, 不设置备用发	市政电网供电,	市政电网供电,	市政电网供电, 不设置备用发
		供电	小以且留用及 电机,年用电量	不设置备用发	不设置备用发	市级重备用及 电机,年用电量
		, , ,	为 401.0601 万	电机,年用电量	电机,年用电量	为 420.8601 万
			度	为121.0601 万度	19.8 万度	度
	公共		年总用量为835	年总用量为 168	年总用量为	年总用量为841
	工程	供水	37.27t,由市政 供水管网供给	30.88t,由市政 供水管网供给	572t,由市政供 水供给	09.27t,由市政
			采用雨、污分流	采用雨、污分流	小	供水供给 采用雨、污分流
			制,设有一套雨	制,设有一套雨		制,设有一套雨
		排水	水排污系统、一	水排污系统、一	依托现有工程	水排污系统、一
			套生活污水排	套生活污水排		套生活污水排
			放系统	放系统		放系统

			热、挤 出废气		未验收	不涉及	
			硅油加	有机废气收集 后经二级活性 炭吸附处理后			有机废气收集 后经二级活性 炭吸附处理后
			,	排气筒(DA00 4)排放。	排气筒(DA00 4)排放。		排气筒 (DA00 4) 排放。
			食堂油 烟	除油烟机处理 后由1个15m高	除油烟机处理 后由1个15m高	依托现有工程	除油烟机处理后由1个15m高
				油烟采用静电	油烟采用静电		油烟采用静电
				(二期未建)。	(二期未验收)。		(二期未建)
		7,00		经1个23m高排 气筒(P3)排放	经1个23m高排 气筒 (P3) 排放		经1个23m高排 气筒 (P3)排放
		设施		炉废气排气筒	炉废气排气筒		炉废气排气筒
		理	气	放;二期工程锅	放; 二期工程锅		放;二期工程锅
		治	锅炉废	简(DA002)排	简(DA002)排	不涉及	~ ~23m 高雅气 筒(DA002)排
		人气		程锅炉废气经 1 个 23m 高排气	程锅炉废气经 1 个 23m 高排气		程锅炉废气经 1 个 23m 高排气
		废		为燃料,一期工	为燃料,一期工		为燃料,一期工
				气、醇基燃料作	气、醇基燃料作		气、醇基燃料作
	1 / 1			采用液化石油	采用液化石油		采用液化石油
	环保 工程			A001) 排放。	A001) 排放。		A001) 排放。
	∓ 7.□				处理后经 I 个 I 5m 高排气筒 (D		处理后经 1 个 1 5m 高排气筒 (D
			室)	燃烧处理。废气 处理后经1个1	燃烧处理。废气 处理后经 1 个 1		燃烧处理。废气 处理后经 1 个 1
			和实验	点 吸附浓缩-催化 吸附浓缩-催化		吸附浓缩-催化	
			厂、废 水处理	一并经活性炭	一并经活性炭		一并经活性炭
			胶生 产、废	施的恶臭气体,	施的恶臭气体,	不涉及	施的恶臭气体,
			D封装	气、废水处理设	气、废水处理设		气、废水处理设
			气(LE	無国权+//···································	無国权+水 <u>吸</u> 術 后,与实验室废		
			有机废	的呼吸气经冷 凝回收+水喷淋	的呼吸气经冷 凝回收+水喷淋		的呼吸气经冷 凝回收+水喷淋
				不凝气、中间罐	不凝气、中间罐		不凝气、中间罐
				水解聚合反应	水解聚合反应		水解聚合反应
				处理厂处理。	处理厂处理。		处理厂处理。
				排入江海污水	排入江海污水		排入江海污水
			水	回用于生产,部 分经市政管网	四用于生产,部 分经市政管网	依托现有工程	凹用于生产,部 分经市政管网
		施	生产废	施处理后部分 回用于生产,部	施处理后部分 回用于生产,部	优长现方工程	施处理后部分 回用于生产,部
		设		建污水处理设	建污水处理设		建污水处理设
		理		生产废水经自	生产废水经自		生产废水经自
		治		处理。	处理。		处理;
		废水		海污水处理厂	海污水处理厂		海污水处理厂
		ribe*	水	政管网排入江	政管网排入江	依托现有工程	政管网排入江
			生活污	经二级化 <u>英</u> 花 预处理后经市	短二级化英花 一 预处理后经市		经二级化英花 预处理后经市
				项目生活污水 经三级化粪池	项目生活污水 经三级化粪池		项目生活污水 经三级化粪池

	 						
				性炭吸附"处理	性炭吸附"处理		
				后经管道引至1	后经管道引至1		
				5m 排气筒 DA0	5m 排气筒 DA0		
				07 排放	07 排放		
		一个 90m ² 一般	一个 90m ² 一般		一个 90m ² 一般		
	固体废物	固体废物暂存	固体废物暂存	分 4 切去子和	固体废物暂存		
	治理设施	区、一个 99m ²	区、一个 99m ²	依托现有工程	区、一个 99m²		
		危废仓	危废仓		危废仓		
	噪声治理 设施	高噪声设备设 基础减振,并加 装消声器,再利 用建筑厂房进 行隔声	高噪声设备设 基础减振,并加 装消声器,再利 用建筑厂房进 行隔声	选用低噪声设备,高噪声设备 设基础减振,并加装消声器,再 利用建筑厂房 进行隔声	高噪声设备设 基础减振,并加 装消声器,再利 用建筑厂房进 行隔声		
	应急设施	占地面积 150 m ² ,300 立方米 事故应急	占地面积 150 m ² ,300 立方米 事故应急	依托现有工程	占地面积 150 m ² ,300 立方米 事故应急		
储运工程	仓库(1#车 间)	仓库 1 层,占地 面积为 2500m², 用于原辅材料	仓库 1 层,占地 面积为 2500m², 用于原辅材料	不涉及	仓库 1 层,占地 面积为 2500m², 用于原辅材料		
		和产品堆放	和产品堆放		和产品堆放		
依托 工程	废水排放 口设置	依托现有工程的生活污水排放口、生产废水排放口					

2、产品及产能

表 2-2 产品及产能表

序号	产品名称	单位/年	现有工程	本项目	总体工程	增减量			
1	LED 封装胶	吨	2700(其中一期已建 1200; 二期未建 1500)	0	2700	+0			
2	环氧塑封材料	吨	5000	0	5000	+0			
注. 7	注, 木项目为研发燃研发实验室扩建项目, 不新增产品种类及产能,								

注: 本项目为研发楼研发实验室扩建项目,不新增产品种类及产能。

3、主要生产单元、生产设施

表 2-3 主要生产单元、生产设施表

类别	设备用途		设备名称	规格	单位	现有 审批 量	工程 验收 量	本项目	总体 工程	増减量
			LED封	接胶一期工	程					
生产a区		1带5反应	水解反应釜	2000L	台	1	1	0	1	+0
	装置	缩合反应釜	2000L	台	5	5	0	5	+0	
		生产品区 (产品A (解缩合)辅助设备	卧式冷凝器	10平方米	台	5	5	0	5	+0
			分水器	100L	台	5	5	0	5	+0
LED封		抽助以备	立式冷凝器	4平方米	台	1	1	0	1	+0
装胶生			溶剂计量罐	3000L	台	1	1	0	1	+0
产		1带2反应	水解反应釜	2000L	台	1	1	0	1	+0
	生产b区	装置	缩合反应釜	2000L	台	2	2	0	2	+0
/	(产品B	(产品B	卧式冷凝器	10平方米	台	2	2	0	2	+0
	水解缩合)	辅助设备	分水器	100L	台	2	2	0	2	+0
			溶剂计量罐	2000L	台	1	1	0	1	+0

		마 양 사 4- 1과	10页子业	<i></i>	1	1		1	
		卧式冷凝器 分水器	10平方米 100L	<u>台</u> 台	1	1	0	1	+0
	1带2反应	水解反应釜	2000L	<u>日</u> 台	1	1	0	1	+0
	装置	缩合反应釜	2000L 2000L	 台	2	2	0	2	+0
	水 且	新	10平方米	<u> </u>	2	2	0	2	+0
		分水器	101777K	<u></u> 台	2	2	0	2	+0
	辅助设备	卧式冷凝器	10平方米	<u></u> 台	1	1	0	1	+0
生产c区		分水器	101777K	<u></u> 台	1	1	0	1	+0
上)C区 (产品C	1带2反应	水解反应釜	2000L	<u></u> 台	2	1	0	1	+0
水解缩合		缩合反应釜	2000L 2000L	<u></u> 台	1	2	0	2	+0
7,4701 210 10	, AL	卧式冷凝器	10平方米		2	2	0	2	+0
		分水器	100L	 台	2	2	0	2	+0
	辅助设备	卧式冷凝器	10平方米	 台	1	1	0	1	+0
	111127 (X III	分水器	100L	 台	1	1	0	1	+0
		真空收集罐	200L	台	0	4	0	4	+0
		共工以未唯	200L 2000L	<u></u> 台	5	4	0	4	+0
产品A、B	、 投料系统	计量罐	1000L	台	1	4	0	4	+0
C	以件水列	単唯	500L		8	6	0	6	+0
		反应釜(液料分	300L	口	0	0	U	0	70
		离)	2000L	台	4	4	0	4	+0
		水解缩合反应 釜(一体)	5000L	台	1	1	0	1	+0
	反应设备	卧式冷凝器	10平方米	台	4	4	0	4	+0
生产d区		田, 九石, 灰柏	20平方米	台	1	1	0	1	+0
(液料分		分水器	100L	台	4	4	0	4	+0
离、一体反	ξ	73 /3 C HI	300L	台	1	1	0	1	+0
应釜)			2000L	台	5	5	0	5	+0
	投料系统	计量罐	1000L	台	2	2	0	2	+0
			500L	台	2	2	0	2	+0
	甲苯征	盾环收集罐	2000L	台	4	4	0	4	+0
	1 計式用	淳溶剂收集罐	5000L	台	1	0	0	0	+0
	EI FUTE	11111111111111111111111111111111111111	3000L	台	1	1	0	1	+0
			5000L	台	0	2	0	2	+0
中间产品	1 7	浄置罐	4000L	台	0	8	0	8	+0
暂存设备		17 11 11 11 11 11 11 11 11 11 11 11 11 1	4500L	台	10	0	0	0	+0
			2000L	台	3	3	0	3	+0
转运设备	转让	运中转缸	800L	台	50	50	0	50	+0
		刮板蒸发器	10m ²	台	1	0	0	0	+0
		预加热器	2000L	台	1	0	0	0	+0
		冷凝器	10m ²	台	1	0	0	0	+0
	液料分离	171)	40m ²	台	1	0	0	0	+0
 液料分离	器(备用)	岩址冬	2000L	台	2	1	0	1	+0
		が	1000L	台	0	1	0	1	+0
			2000L	台	1	2	0	2	+0
		硅树脂罐	2000L	台	1	0	0	0	+0
	液料分离	蒸馏塔	6m ²	台	1	1	0	1	+0
	器(甲醇	预加热器	1000L	台	1	0	0	0	+0

	蒸馏)		30m ²	台	1	0	0	0	+0
	711.744	冷凝器	10m ²		0	1	0	1	+0
		,,,,,,,,,,,	6m ²	台	1	1	0	1	+0
		中转罐(甲醇暂存)	1000L	台	1	2	0	2	+0
		中转罐(甲醇暂 存备用)	1000L	台	1	1	0	1	+0
		精馏釜	2000L	台	0	1	0	1	+0
		中转罐	2000L	台	0	2	0	2	+0
LED卦			30KW	台	2	2	0	2	+0
		搅拌机	15KW	台	4	4	0	4	+0
			2.2kW	台	3	3	0	3	+0
	螺刀	F空压机 	50PMA	台	1	1	0	1	+0
		冷却塔	菱电 200T180m ³ / H	台	3	3	0	3	+0
	常温冷凝	螺杆式冷水机	ST-1093WB 冷媒R22	台	1	1	0	1	+0
	系统	组	ST-419WB 冷媒R22	台	1	1	0	1	+0
		不锈钢保温水	内304外 20115T	台	3	1	0	1	+0
		箱	内304外 20125T	台	0	2	0	2	+0
配套设置	设备 供热系统	燃气蒸汽锅炉	WNS2-1.25- Q(LN).Y	台	1	1	0	1	+0
		醇基燃料锅炉	0.1t/h	台	6	3	0	3	+0
		纯水机	6T/H纯水 +EDI	台	2	1	0	1	+0
	系统		2T/H纯水	台	0	1	0	1	+0
		水罐	5000	台	2	0	0	0	+0
			2000	台	0	2	0	2	+0
	7	令凝器	$\frac{10\text{m}^2}{6\text{m}^2}$	<u>台</u> 台	5	5	0	5	+0
			2WLW-100	台	4	4	0	4	+0
	2	真空泵	2WLW-75	<u></u> 台	0	1	0	1	+0
	凤冷	式冷水机	PC-10AC	台	0	1	0	1	+0
		罗茨泵	ZJP-300	 台	0	1	0	1	+0
			10m ²	 台	1	1	0	1	+0
		冷凝器	4m ²	 台	1	1	0	1	+0
 		水喷淋+活性炭 吸附浓缩-催化 燃烧	/	台	1	1	0	1	+0
	废水	处理设施	/	套	1	1	0	1	+0
		空压机	MAM-890	台	0	1	0	1	+0
中试证室	1 +1++ +	离反应釜	100L	台	10	4	0	4	+0
	气力	相色谱仪	GC1690	台	1	1	0	1	+0
	数显	阿贝折射仪	WYA-2S	台	1	1	0	1	+0

	实验室	精密鼓风	- 上燥箱	BPG-9240A	台	0	1	0	1	+(
		鼓风电热恒流		101-0	<u>日</u> 台	0	2	0	2	+(
		粘度		NDJ-79	台	3	4	0	4	+(
		拉力		PT-1176	台	1	2	0	2	+(
		旋转蒸发		5CS	台	1	1	0	1	+(
		恒温搅		DF-101S	台	9	9	0	9	+(
		电热鼓风		DHG-9030	台	9	5	0	5	+(
		凝胶色i	普仪	LC-20A	台	1	1	0	1	+(
		老化统	<u></u> 箱	BPG-9240A	台	1	1	0	1	+(
		离心薄层1	色谱仪	KH-CTLC	台	1	1	0	1	+(
		密闭型无转	子硫变仪	M-3000A	台	1	1	0	1	+(
		超声波清	洗器	KQ-300	台	1	1	0	1	+(
		爪型干式	真空泵	LH-YB-30H C	台	1	1	0	1	+(
		可程式恒温恒		NQ-80-OYO	台	1	1	0	1	+(
		1. 677 124 1		装胶二期工程						
		水解缩合		2000L	台	1		0	1	+(
		水解缩合		5000L	台	7		0	7	+(
	기·숙기	反应釜 (液)		5000L	台	1		0	1	+(
	生产设备	水解缩合		300L	台	1	_	0	1	+(
		碟式冷		/	台	10		0	10	+(
		分水		100L	台	10	-	0	10	+(
	中四子口	不锈钢卧	八储罐	3000L	台	1	-	0	1	+(
LED封 装胶生	中间产品 暂存设备	静置罐		4500L	台	2	二期	0	2	+(
产		供热系统	燃气蒸汽 锅炉	S2-1.25-Q(L N).Y	台	1	未建	0	1	+(
		DVW/N/	醇基燃料 锅炉	0.1t/h	台	7		0	7	+(
	配套设备	冷却塔		180m ³ /H	台	3		0	3	+(
		爪型干式;	真空泵	LH-YB-110 HC	台	2		0	2	+
		油循环温度	控制机	AWOT-20- 24	台	1		0	1	+(
				 氧塑封材料					<u> </u>	
			\$11.5	十八三十八八八一				0	2	+
				TDS-75	台	2				
		双螺杆挤	出机	TDS-75	台台	2		0	1	1 +
		双螺杆挤冷却带		TDS-125D DB-CL9.8-	台 会	2 1 1	_	0	1	
			Ť	TDS-125D	台	1				+(
江层新		冷却带 提升混合	初	TDS-125D DB-CL9.8- 600	台条	1		0	1	+(
		冷却带	初	TDS-125D DB-CL9.8- 600 HDT-1500	台条台	1 1 5	建设	0	1 5	+(
封材料	生产设备	冷却带 提升混合	初	TDS-125D DB-CL9.8- 600 HDT-1500 T435	台条台台	1 1 5 1	建设中	0 0 0	1 5 1	+1 +1 +1
		冷却带 提升混合	· ↑机 L	TDS-125D DB-CL9.8- 600 HDT-1500 T435 T650 IØ900×950 IØ1600×18	台条台台台	1 1 5 1 1	1 1	0 0 0	1 5 1	+1
封材料		冷却带 提升混合 细粉材	た 計 し し	TDS-125D DB-CL9.8- 600 HDT-1500 T435 T650 IØ900×950 IØ1600×18 00 XDYJ363	台条台台台	1 1 5 1 1 2	1 1	0 0 0 0	1 5 1 1 2	+0 +0 +0 +0
		冷却带 提升混合 细粉材 球磨材	た 小机 し し	TDS-125D DB-CL9.8- 600 HDT-1500 T435 T650 IØ900×950 IØ1600×18 00	台条台台台台	1 1 5 1 1 2	1 1	0 0 0 0 0	1 5 1 1 2	+(+++++++++++++++++++++++++++++++++++++

		饼料粉碎机	FS450X300	台	2		0	2	-
			SHR-300A	台	1		0	1	-
		高速搅拌机	SRL-W130	台	5		0	5	-
			0				0		
		卧式搅拌机	SRL-4500A	台	20		0	20	
		硅油加热罐 (电加热)	5L	个	20		0	20	_
		 	GFSJ-48	台	3		0	3	
		ሳጣ ህ目 ላህ ፑተ ላህ ቤ	GFSJ-32	台	2		0	2	
		投料器	TLQ-800	台	1		0	1	
		除铁器	/	台	2		0	2	
		混合料车	/	台	1		0	1	
		回收除尘器(粉料可回收 利用)	/	台	5		0	5	
			DFKL-300 C	台	1		0	1	
	悪ったい た タ	集尘器(粉料不可回收利 用)	С	台	1		0	1	
	配套设备		DFKL-150 C	台	1		0	1	
		有机废气处理设施	/	台	1		0	1	
		冷却塔	$280 m^3/h$	台	2		0	2	
		制冷机	/	台	2		0	2	
		空压机	/	台	1		0	1	
		双螺杆挤出机	/	台	1		0	1	
		高速搅拌机	/	台	1		0	1	
		冷却带	/	台	1		0	1	
		球磨机	/	台	1		0	1	
		混合机	/	台	1		0	1	
		万能试验机	/	台	1		0	1	
		岛津流变仪	/	台	1		0	1	
	研发试验	离子色谱仪	/	台	1		0	1	
		烘箱	/	台	1		0	1	
		静态热机分析仪	/	台	1		0	1	
		导热系数分析仪	/	台	1		0	1	
		体积电阻率仪	/	台	1		0	1	
		动态热机分析仪	/	台	1		0	1	
		恒温恒湿箱	/	台	1		0	1	
		高温试验箱	/	台	1		0	1	
		集热式恒温加热磁力搅 拌器	DF-101S	台	0	0	5	5	
		智能数显恒温水油浴锅	HH-WO-5L	台	0	0	1	1	
		电子天平	JJ2000B	台	0	0	1	1	
研发楼		数显电动搅拌器	JJ-1A	台	0	0	1	1	
研发实 验	研发试验	冰箱	美的 MR-189E	台	0	0	1	1	
		冷凝管	/	根	0	0	6	6	
		分水器	/	个	0	0	3	3	
		三口圆底烧瓶	5000ml	个	0	0	1	1	
		三口圆底烧瓶	3000ml	个	0	0	2	2	

	一口同片体紅	2000 1	Δ.	0	_	2	2	
	三口圆底烧瓶	2000ml	<u>^</u>	0	0	3	3	+3
	三口圆底烧瓶	1000ml	<u>个</u>	0	0	9	9	+9
	三口圆底烧瓶	500ml	<u>^</u>	0	0	4	4	+4
	三口圆底烧瓶	250ml	<u>^</u>	0	0	4	4	+4
	单口烧瓶	2000ml	个	0	0	3	3	+3
	单口烧瓶	1000ml	个	0	0	4	4	+4
	单口烧瓶	500ml	个	0	0	6	6	+6
	单口烧瓶	250ml	个	0	0	8	8	+8
	烧杯	1000ml	个	0	0	3	3	+3
	烧杯	500ml	个	0	0	3	3	+3
	烧杯	250ml	个	0	0	2	2	+2
	蒸馏头	/	个	0	0	8	8	+8
	尾接管	/	个	0	0	6	6	+6
	温度计	/	根	0	0	6	6	+6
	罗茨真空泵	ZJP-70	台	0	0	1	1	+1
	循环水真空泵	WLW-50	台	0	0	1	1	+1
	常温冷凝系统	/	套	0	0	1	1	+1
	空压机	/	套	0	0	1	1	+1
	纯水制备系统	/	套	0	0	1	1	+1
	50L 玻璃釜	/	套	0	0	1	1	+1
	气相色谱仪	GC1690	台	0	0	1	1	+1
	数显阿贝折射仪	WYA-2S	台	0	0	1	1	+1
	粘度计	NDJ-79	台	0	0	3	3	+3
	拉力机	PT-1176	台	0	0	1	1	+1
	旋转蒸发器	5CS	台	0	0	1	1	+1
	电热鼓风干燥箱	DHG-9030	台	0	0	9	9	+9
	凝胶色谱仪	LC-20A	台	0	0	1	1	+1
	老化箱	BPG-9240A	台	0	0	1	1	+1
		M-3000A	<u></u> 台	0	0	1	1	+1
	超声波清洗器	KQ-300	<u>口</u> 台	0	0	1	1	+1
		- ` - 						
		NQ-80-OYO	台	0	0	1	1	+1
	集热式恒温加热磁力搅 拌器	DF-101S	台	0	0	2	2	+2
	智能数显恒温水油浴锅	HH-WO-5L	台	0	0	1	1	+1
	电子天平	JJ1000B	台	0	0	1	1	+1
	数显电动搅拌器	JJ-1A	台	0	0	1	1	+1
	冰柜	BC/BD-100 DTQ	台	0	0	1	1	+1
	冷凝管	/	根	0	0	6	6	+6
	分水器	/	个	0	0	3	3	+3
	三口圆底烧瓶	5000ml	个	0	0	1	1	+1
	三口圆底烧瓶	3000ml	个	0	0	2	2	+2
	三口圆底烧瓶	2000ml	个	0	0	3	3	+3
	三口圆底烧瓶	1000ml	<u></u>	0	0	9	9	+9
	三口圆底烧瓶	500ml	<u></u>	0	0	4	4	+4
	三口圆底烧瓶	250ml	个	0	0	4	4	+4
		2000ml	<u></u> 个	0	0	3	3	+3
		1000ml	<u> </u>	0	0	4	4	+4
	光口灯机	10001111	I	U		4	4	_ - 4

单口烧瓶	500ml	个	0	0	6	6	+6
单口烧瓶	250ml	个	0	0	8	8	+8
烧杯	1000ml	个	0	0	3	3	+3
烧杯	500ml	个	0	0	3	3	+3
烧杯	250ml	个	0	0	2	2	+2
蒸馏头	/	个	0	0	8	8	+8
尾接管	/	个	0	0	6	6	+6
温度计	/	根	0	0	6	6	+6
集热式恒温加热磁力搅 拌器	DF-101S	台	0	0	4	4	+4
数显电动搅拌器	JJ-1A	台	0	0	1	1	+1
冷凝管	/	根	0	0	6	6	+6
分水器	/	个	0	0	3	3	+3
三口圆底烧瓶	5000ml	个	0	0	1	1	+1
三口圆底烧瓶	3000ml	个	0	0	2	2	+2
三口圆底烧瓶	2000ml	个	0	0	3	3	+3
三口圆底烧瓶	1000ml	个	0	0	9	9	+9
三口圆底烧瓶	500ml	个	0	0	4	4	+4
三口圆底烧瓶	250ml	个	0	0	4	4	+4
单口烧瓶	2000ml	个	0	0	3	3	+3
单口烧瓶	1000ml	个	0	0	4	4	+4
单口烧瓶	500ml	个	0	0	6	6	+6
单口烧瓶	250ml	个	0	0	8	8	+8
烧杯	1000ml	个	0	0	3	3	+3
烧杯	500ml	个	0	0	3	3	+3
烧杯	250ml	个	0	0	2	2	+2
蒸馏头	/	个	0	0	8	8	+8
尾接管	/	个	0	0	6	6	+6
温度计	/	根	0	0	4	4	+4
冷却塔	LDP-10T	台	0	0	1	1	+1

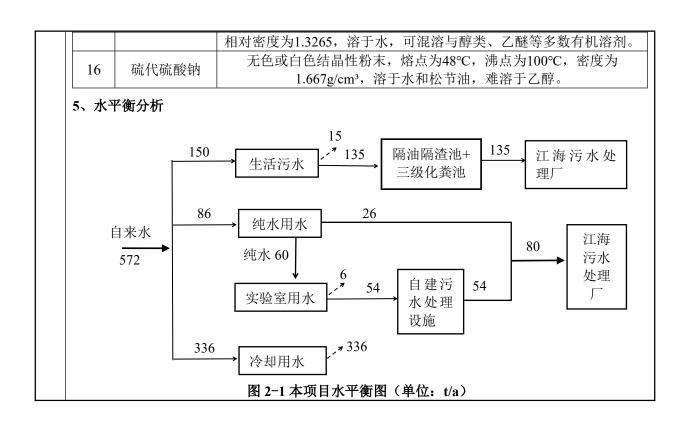
4、主要原辅材料及燃料

项目主要原辅材料用量见表 2-4;基本情况见表 2-5;化学品主要成分及理化性质见表 2-6。

表 2-4 项目主要原辅材料用量表

					数量		
类别	名称	单位	现有	工程	本项	总体工程	增减
			审批内容	验收内容	目	心件工性	量
	苯基三甲氧基 硅烷	t/a	1922.100	854.283	0	1922.100	+0
LED	二苯基二甲氧 基硅烷	t/a	1072.200	476.541	0	1072.200	+0
LED 封装 胶生	四甲基二乙烯 基二硅氧烷	t/a	333.800	148.361	0	333.800	+0
产	四甲基二硅氧 烷	t/a	217.900	96.844	0	217.900	+0
	三氟甲磺酸	t/a	3.069	1.236	0	3.069	+0
	碳酸氢钾	t/a	0.520	0.231	0	0.520	+0
	氢氧化钾	t/a	1.680	0.747	0	1.680	+0

		甲苯	t/a	108.036	48.017	0	108.036	+0
		纯水	t/a	14442.160	6575.89	0	14442.160	+0
		铂金催化剂	t/a	0.014	0.006	0	0.014	+0
		抑制剂	t/a	1.35	0.6	0	1.35	+0
		增粘剂	t/a	27	12	0	27	+0
		氮气	L/a	3545	2545	0	3545	+0
		硅微粉	t/a	4300	0	0	4300	+0
		邻甲酚环氧树 脂	t/a	130	0	0	130	+0
		联苯型环氧树 脂	t/a	194	0	0	194	+0
		联苯苯酚线形 酚醛树脂	t/a	280	0	0	280	+0
	环氧	氨基偶联剂	t/a	11.5	0	0	11.5	+0
	塑封	硅烷偶联剂 CFN-183	t/a	17.5	0	0	17.5	+0
	材料 生产	碳黑	t/a	20	0	0	20	+0
	<u></u>)	三苯基膦	t/a	12	0	0	12	+0
		蒙旦蜡	t/a	10	0	0	10	+0
		端羟基丁腈橡 胶	t/a	23	0	0	23	+0
		SF8421EG(硅 油)	t/a	5	0	0	5	+0
		碱式碳酸铝镁	t/a	7.5	0	0	7.5	+0
		氢氧化铝	t/a	75	0	0	75	+0
		硅微粉	kg/a	5100	0	0	5100	+0
		邻甲酚环氧树 脂	kg/a	160	0	0	160	+0
		联苯型环氧树 脂	kg/a	250	0	0	250	+0
		联苯苯酚线形 酚醛树脂	kg/a	350	0	0	350	+0
	环氧	氨基偶联剂	kg/a	36	0	0	36	+0
	塑封 材料	硅烷偶联剂 CFN-183	kg/a	54	0	0	54	+0
	研发	碳黑	kg/a	25	0	0	25	+0
	试验	三苯基膦	kg/a	15	0	0	15	+0
		蒙旦蜡	kg/a	12	0	0	12	+0
		端羟基丁腈橡 胶	kg/a	71	0	0	71	+0
		SF8421EG(硅油)	kg/a	10	0	0	10	+0
		碱式碳酸铝镁	kg/a	10	0	0	10	+0
		氢氧化铝	kg/a	90	0	0	90	+0
		硅 40	kg/a	1.8	0	0	1.8	+0
	实验	正硅酸甲酯	kg/a	1.2	0	0	1.2	+0
	室检	醋酸酐	kg/a	3.37	0	0	3.37	+0
	测	甲苯	kg/a	210	0	0	210	+0
		酒精	kg/a	530	0	0	530	+0


	苯基三甲氧基 硅烷	kg/a	90	0	0	90	+0
	四甲基二乙烯 基二硅氧烷	kg/a	30	0	0	30	+0
	碳酸钠	kg/a	1.51	0	0	1.51	+0
	氢氧化钾	kg/a	0.3	0	0	0.3	+0
	碳酸钙	kg/a	2.004	0	0	2.004	+0
	氢氧化钠	kg/a	0.12	0	0	0.12	+0
	碳酸钾	kg/a	0.3	0	0	0.3	+0
	环氧丙氧丙基 三甲氧基硅烷	kg/a	18	0	0	18	+0
	含氢双封头(四 甲基二硅氧烷)	kg/a	30	0	0	30	+0
	四氢呋喃	kg/a	1.59	0	0	1.59	+0
	甲基乙烯基二 氯硅烷	kg/a	0.3	0	0	0.3	+0
	乙烯基三氯硅 烷	kg/a	0.3	0	0	0.3	+0
	硫酸	kg/a	0.552	0	0	0.552	+0
	重铬酸钾	kg/a	0.3	0	0	0.3	+0
	金属钠	kg/a	0.18	0	0	0.18	+0
	乙醚	kg/a	3	0	0	3	+0
	双氧水	kg/a	0.3	0	0	0.3	+0
	溴	kg/a	1.985	0	0	1.985	+0
	硼酸三甲酯	kg/a	1.57	0	0	1.57	+0
	D4H(四甲基四 氢环四硅氧烷)	kg/a	3.14	0	0	3.14	+0
	甲醇	kg/a	47	0	0	47	+0
	硫代硫酸钠 (0.05N)	L/a	19	0	0	19	+0
	乙烯基三甲氧 基硅烷	kg/a	3.14	0	0	3.14	+0
	硫代硫酸钠 (0.1N)	L/a	37.68	0	0	37.68	+0
	二氯甲烷	L/a	47.1	0	0	47.1	+0
	复合碱	t/a	8.6	0	0	8.6	+0
	聚合氯化铝	t/a	12.779	0	0	12.779	+0
废水	硫酸亚铁	t/a	10.644	0	0	10.644	+0
处理 数型 药剂	过氧化氢 (浓度 50%)	t/a	16.78	0	0	16.78	+0
	硫酸	t/a	30.796	0	0	30.796	+0
	次氯酸钠	t/a	6.504	0	0	6.504	+0
	聚丙烯酰胺	t/a	2.007	0	0	2.007	+0
研发	苯基三甲氧基 硅烷	kg/a	0	0	530	530	+530
楼研 发实	二苯基二甲氧 基硅烷	kg/a	0	0	128	128	+128
验室	四甲基二乙烯 基二硅氧烷	kg/a	0	0	148	148	+148

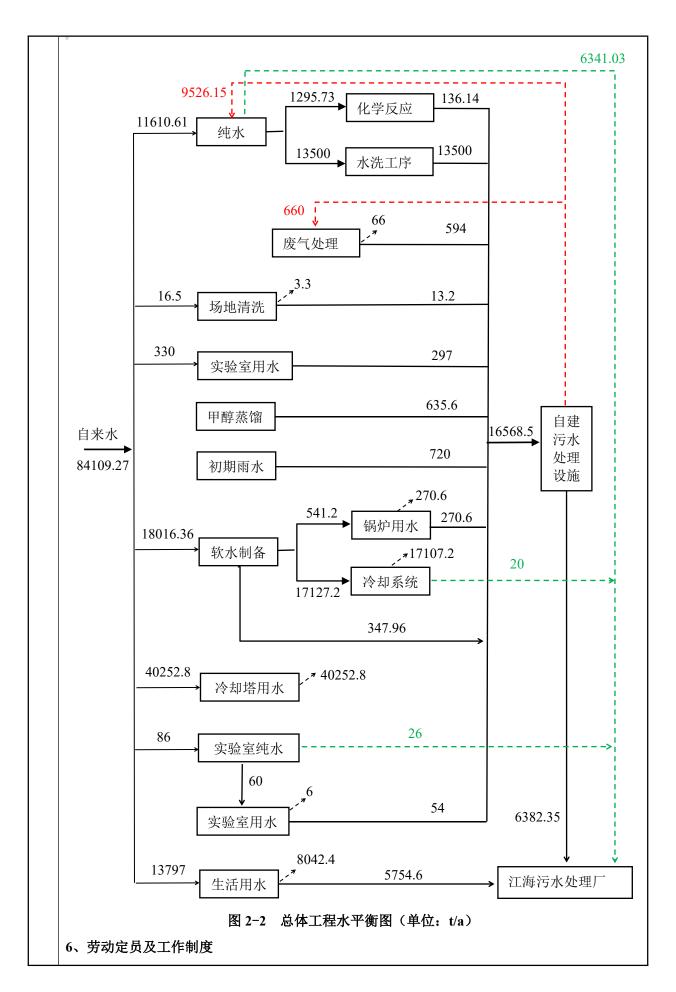

四甲基二硅氧 烷	kg/a	0	0	31	31	+31
三氟甲磺酸	kg/a	0	0	0.5	0.5	+0.5
碳酸氢钾	kg/a	0	0	2	2	+2
氢氧化钾	kg/a	0	0	2	2	+2
甲苯	kg/a	0	0	1750	1750	+1750
纯水	kg/a	0	0	1370	1370	+1370
正硅酸甲酯	kg/a	0	0	10.8	10.8	+10.8
70%酒精	kg/a	0	0	650	650	+650
溴	kg/a	0	0	1	1	+1
KI	kg/a	0	0	6	6	+6
冰醋酸	kg/a	0	0	10	10	+10
溴化钠	kg/a	0	0	3.5	3.5	+3.5
甲醇	kg/a	0	0	3.5	3.5	+3.5
硅油	kg/a	0	0	5	5	+5
硫代硫酸钠	kg/a	0	0	2.5	2.5	+2.5
红墨水	kg/a	0	0	5	5	+5

表 2-5 主要原辅料基本情况表

		<i>\</i>	く 2-3 土	女你拥件至4	- 10 0000			
序号	名称	主要成分	实验室最大存在量	规格	存储形态	存储位置	是否属 于化学 品	用途
1	苯基三甲氧 基硅烷	苯基三甲氧 基硅烷	0.04t	250g/瓶	液态		是	
2	二苯基二甲 氧基硅烷	二苯基二甲 氧基硅烷	0.02t	250g/瓶	液态		是	
3	四甲基二乙 烯基二硅氧 烷	四甲基二乙 烯基二硅氧 烷	0.02t	250g/瓶	液态		是	有机硅胶
4	四甲基二硅 氧烷	四甲基二硅 氧烷	0.005t	250g/瓶	液态		是	树脂研发
5	三氟甲磺酸	三氟甲磺酸	0.0001t	250g/瓶	液态		是	
6	碳酸氢钾	碳酸氢钾	0.0001t	250g/瓶	液态		是	
7	氢氧化钾	氢氧化钾	0.0001t	250g/瓶	固态		是	
8	甲苯	甲苯	0.3t	500g/瓶	液态	研发	是	
9	纯水	水	0.3t	2L/瓶	液态	楼一	是	反应、清洗
10	正硅酸甲酯	正硅酸甲酯	0.009t	250g/瓶	液态	楼原 料区	是	化学检验 反应
11	70%酒精	乙醇	0.01t	250mL/瓶	液态		是	清洁
12	溴	溴	0.25t	500g/瓶	液态		是	滴定分析
13	KI	碘化钾	0.001t	500g/瓶	固态		是	化学检验
14	冰醋酸	乙酸	0.001t	500g/瓶	液态		是	化学检验 配液、反应
15	溴化钠	溴化钠	0.0005t	500g/瓶	固态		是	化学检验 配液、反应
16	甲醇	甲醇	0.001t	250mL/瓶	液态		是	化学检验 配液、反应
17	硅油	硅油	0.001t	250mL/瓶	液态		是	化学检验 配料
18	硫代硫酸钠	硫代硫酸钠	0.001t	250g/瓶	固态		是	化学检验

									滴定分析		
19	红墨水	曙光幻	Ĺ A	0.001t	100mL/瓶	液态		是	红墨水渗 透检验		
		 表	2-6	化学品主		 化性质-	 -览表		人 21四 9四		
序号	名称			10 1 HH		理化性质					
	苯基三甲氧	1 長							F,相对密度		
1	本金二十年 硅烷	当 为	1.062,	可溶于	有机溶剂,不			生好,可作	制备高分子		
	二苯基二甲	1年 工4	5.禾田	流体 法		化学物的		扣对家庭	为1.08,用于		
2	一本差一 [†] 基硅烷	* 羊(儿 t	当透明	视外,初	制备有机硅组				708,用丁		
	│ │ 四甲基二乙	. 作名			 点为 133℃,						
3	基二硅氧烷	· · / / /	希基硅	树脂、乙	」烯基硅油、铂	由、铂铬合物等生产过程中的添加剂(中间 体)。					
		. 无值	五透明	<u></u> 液体、熔	>占为-40°C。						
4	四甲基二码	氧 / 3 (为0.76,不溶于水。急性毒性: $LD_{50}3000$ mg/kg(大鼠经口)、								
	烷 		LC ₅₀ /2H400000mg/m³/2H(大鼠) 纯磷酸为无色结晶,无臭,具有酸味,熔点为-40℃,沸点为162℃,								
_		I									
5	三氟甲磺	蛟 相	对密度	5为1.696	,可溶于有机 タ京八ス方				好,可作制		
		一 干 化	五添田	滅休 / 杉	备高分子有标				F. 相对家度		
6	 碳酸氢钾	1 '					5233℃,闪点为99°F,相对密度 有机溶剂,如二甲基甲酰胺,乙				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				腈和二甲基						
			白色晶体,易潮解,熔点为360.4℃,沸点为1320℃,相对密度为								
7	氢氧化钾	图 溶	于水、	乙醇,得	敞溶于醚 。稳	定性好。 鼠经口)		i性: LD50	273mg/kg(大		
			五透明	滅休.有	坐 似某的苦君			94.9°C. 沸」	点为110.6℃,		
8	甲苯	1 '							享、谜等多数		
					有机溶液	剂。稳定	性好。				
9	 正硅酸甲	脂 无1	色液体	、熔点为	为-4℃,沸点			目对密度为	1.023,闪点		
			名添 服	い流分 オ		次不溶- 燃点为		沸占为7	8 200 门占		
10	 70%酒精				ョ方音气味, E为1.59,与z						
- •	, , , , , ,	. / 3 1	,	, д. ·ч ш / <i>)</i>		多数有机		. —	·**4 · H ·H ·		
		I							9,易溶于乙		
11	溴	醇、	乙醚						勿水溶液,可		
		7-	-		く。急性毒性 本,无臭,有				-		
12	KI	I			45℃,易溶∃			_			
		```	- , ,			出碘。			- D: 21 W41 F4		
		<b>I</b>			容点为16.6℃				_		
12	ソル 亜井 電本	1						_ , , , , , ,	压为1.52kPa		
13	冰醋酸	<b>I</b>			温度为321.6% (V/V)为1 <i>6</i>						
		426	, C, %		(V/V)/JIC 乙醇、乙醚、				yJ.470, 俗丁		
		一	色立方						苦。熔点为		
14	       溴化钠	<b>I</b>			390℃密度为3	_					
14	大化"	(2			590.5g/100ml			_			
			水溶	液呈中性	:,有导电性。	。微溶于	一醇,可	浴士乙腈,	厶骽。		
		+:4	名 法 口口	油井 土	可刺激性气味	<b>                                    </b>	5 07 9	20C 2 3#			





#### 本次扩建新增10名员工。

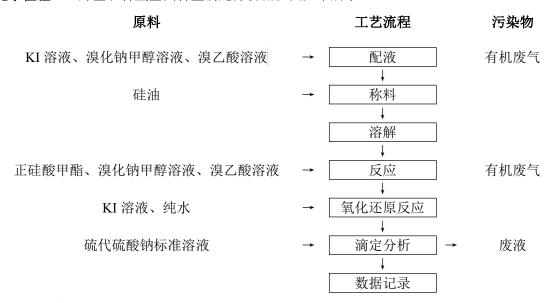
表2-7 劳动定员及工作制度表

项目	现有工程	本项目	总体工程	变化情况
全年工作天数	330天	330天	330天	无变化
每天班次	3班	1班	3班	无变化
每班时间	8h	8h	8h	无变化
劳动定员	210人	10人	220人	新增10人
食宿情况	均在厂内食宿	均在厂内食宿	均在厂内食宿	无变化

#### 7、厂区平面布置及四至情况

本项目厂区总占地面积 20676.8m²,总建筑面积约 11000m²,本项目的建筑物为 1 栋单层 1#车间仓库、1 栋单层 2#车间厂房、1 栋 4 层 3#车间厂房、1 栋 4 层 4#车间厂房、1 栋 2 层办公楼、1 栋 3 层宿舍楼。

本项目依托 1 栋 4 层 4#车间厂房进行扩建研发实验室,无需新增建设用地和厂房,实验室内部划分有:检验区、检测区、实验区、办公区等。


各功能区域的按照工艺流程走向布置,各区域紧密联系,尽量缩短物料的运输距离。

项目项目东面为丰正食品,南面为复泰纸品厂,西面为江门市江星电子有限公司,北面相隔高新西路为东美联工艺纸品厂。与本项目距离最近的环境敏感点为位于项目西北面的江海万达公寓,相距约 180 米。

#### 工艺流程及产排污环节(图示):

**检验:** 本项目对每批次 LED 封装胶、环氧塑封材料产品抽取部分样品进行测试,每批次取生产 线上留样材料 10g 左右进行理化实验测试,按每年工作 330 天,每天一批次计算,则每年检验 产品量为 0.007 吨。涉及的试剂调配、检验等于通风橱内进行。

化学检验: 乙烯基和含氢基团含量滴定分析流程图如下所示:



#### 物理主要检验项目及工艺流程:

硬度:将胶水倒入定制模具,烘箱烘烤固化,冷却后测量硬度值,该过程会产生有机废气。

粘度:将胶水倒入粘度计中,粘度计的指针稳定后读数并记录。

折光率: 取液体样品放在折射率仪器棱镜表面上, 调整对齐后, 读数并记录。

红墨水:灯珠放入装有红墨水的容器中,烘烤后,清水冲洗灯珠后,显微镜观察灯珠外观。

**爆胶:** 灯珠放入恒温恒湿试验机中吸湿后,置于加热板上加热,显微镜下观察灯珠外观,记录结果。

失重率: 分别称量待测样品固化前后重量, 计算其失重率。

**机械性能**:胶水倒入固定模具,烘箱烘烤固化,冷却后与拉力试验机中测试并记录,该过程会产生有机废气。

纯度测试:将样品,加入到气相色谱仪中测试并记录。

**研发:** 本项目研发实验室主要对有机硅胶树脂进行研发。本项目研发内容具有不确定性,本评价围绕建设单位目前的生产流程进行研发改进,生产流程图如下图所示:

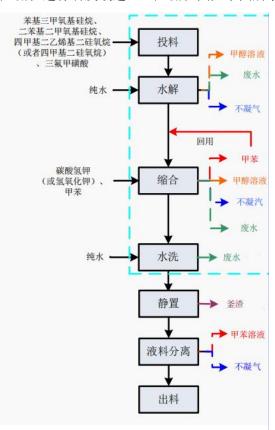


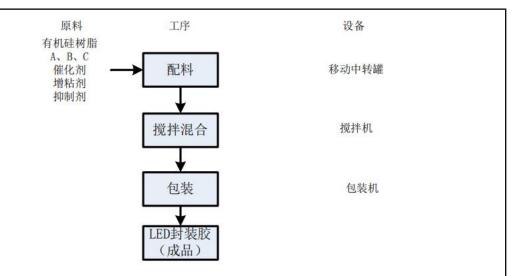

表2-8 本项目产污情况一览表

类型	产污环节	主要污染物	治理措施及去向
废气	研发实验废气(化学检验配液、反应、物理检验胶水固化、研发)	挥发性有机 物、甲苯	经通风橱收集后引至一套"二级活性炭吸附" 处理,处理后经管道引至15m排气筒DA007 排放
废水	员工生活污水	CODcr、 BOD5、SS、 氨氮	经现有三级化粪池预处理后通过市政管网排 入江海区污水处理厂处理,尾水排入麻园河
	纯水制备浓水	盐度	经现有自建污水处理设施处后通过江海区污 水处理厂处理,尾水排入麻园河
固废	员工生活	生活垃圾	交由环卫部门统一处置

与
项
目
有
关
的
原
有
环
境
污
染
问
町

	研发实验工序	实验室固废	交由一般工业固废处置单位处理
	废气治理	废活性炭	
	研发实验工序	实验室废液	交由有危废处置资质单位处理
	研发实验工序	废包装桶	
噪声	设备运行	噪声	定期维护、基础减震

## 1、现有工程生产工艺流程


# (1) 有机硅树脂生产工艺流程:

题

# 工艺流程简介:

项目半成品有机硅树脂以苯基三甲氧基硅烷、二苯基二甲氧基硅烷、四甲基二乙烯基二硅 氧烷、四甲基二硅氧烷为原料在碱性催化下发生水解、缩合形成缩合物,以甲苯为溶剂,再经 水洗、静置、分离过程产出有机硅树脂。

# (2) LED 封装胶生产工艺流程:



#### 工艺流程简介:

项目根据原辅料投加比例不同生产得到不同性能的半成品有机硅树脂 A、B、C,根据订单要求不同,按一定的比例将半成品有机硅树脂 A、B、C 和添加剂在常温下密闭搅拌区进行混合搅拌,生产出不同型号的 LED 封装胶产品。有机硅树脂混合搅拌工序不发生反应,只是进行单纯的混合分装。半成品有机硅树脂 A、B、C 和添加剂、LED 封装胶产品是无色透明油状液体,沸点大于 250°C,经试验在 250°C下挥发分含量 4.2416g/L(约 0.36%),常温下搅拌过程基本不产生有机废气;每种产品使用固定生产设备,设备循环使用无需清洗。

## (3) 醇基燃料生产工艺流程图:

### 工艺流程简介:

项目的副产物甲醇溶液的甲醇含量约 60%、含水约 38%、含少量的有机硅树脂、甲苯。甲醇溶液经管道送至液料分离装置(甲醇蒸馏器)内进行分馏处理,加热至 60~70℃,冷凝回收后得到醇基燃料(甲醇含量约 81%),符合《醇基液体燃料标准》(GB16663-1996);蒸馏残液引至废水处理设施处理。

	/1/ 江ອ朔杜林如此本子中冰江园
'	(4) 环氧塑封材料生产工艺流程图:
_	工艺流程简介:
	上 <b>乙加程间</b> 刀: 环氧树脂、酚醛树脂和其他辅料在加热 100-130℃融化混合,挤出冷却形成固体产品(
.1.	
	时材料),以低温(5℃)贮存提供给下游企业。下游企业在产品使用过程时塑封材料加热。
1	75℃熔融塑化交联固化,达到塑封效果。
	塑封材料在原料一定比例混合,交联剂在175℃下起作用促进树脂交联固化。项目生产

程将各种原料混合挤出,控制温度低于130℃,项目生产过程不发生固化反应。

**环氧树脂粉碎、除铁:** 环氧树脂原材料预处理,人工投加原料,利用粉碎机将原料邻甲酚醛环氧树脂和联苯型环氧树脂颗粒粉碎成更小的颗粒。粉碎机为密闭式,该工序粉尘为投料和卸料时产生的粉尘,粉尘收集后经 1#回收除尘器处理,回收的粉尘回用于生产。环氧树脂粉碎后利用除铁器进行除铁,除铁器利用磁棒磁选去除原料中的微量铁粉。

**酚醛树脂粉碎、研磨、除铁:** 酚醛树脂原材料预处理,人工投加原料,利用粉碎机将原料 联苯苯酚线形酚醛树脂颗粒粉碎成更小的颗粒,粉碎机为密闭式,该工序粉尘为投料和卸料时 产生的粉尘,粉尘收集后经 2#回收除尘器处理,回收的粉尘回用于生产。酚醛树脂粉碎后利用 除铁器进行除铁,除铁器利用磁棒磁选去除原料中的微量铁粉。经粉碎后的酚醛树脂与蒙旦蜡、 碳黑一并经二楼球磨间投料器投入研磨机进行研磨,研磨机为密闭式,该工序粉尘为投料和卸 料过程产生的粉尘,一楼和二楼球磨间粉尘收集后经 6#集尘器处理,回收的粉尘交由一般工业 固体废物回收公司处理。

配料、搅拌、除铁:项目共设置3台高速搅拌机,每台高速搅拌机配套1个投料器,按照配方中的比例称量各种原材料,加至二楼投料器中投入到高速搅拌机,原料在高速搅拌机中进行搅拌混合,高速搅拌机为密闭式。其中液体原材料硅油由与设备直接相连接的加热罐(每台高速搅拌机配套2个5L电加热罐,硅油使用电加热至130°C)喷雾装置喷入,液体材料喷入与粉料投入交替进行,加料与搅拌同步进行,本环节液体材料(硅油、偶联剂和端羟基丁腈橡胶)用量相对于粉料用量很小,搅拌后物料仍为粉料,不粘连结块、不改变粉料粒径。投料过程为手工拆包、通过手工投加,投料粉尘收集后经3#、4#、5#回收除尘器(每个投料器配套1个)处理,收集的粉尘回用于生产。原料经搅拌后利用除铁器进行除铁,除铁器利用磁棒磁选去除原料中的微量铁粉。除铁后的原料卸料至混合料车中,卸料过程会产生粉尘,粉尘收集后经7#集尘器处理,回收的粉尘交由一般工业固体废物回收公司处理。硅油加热过程会产生少量有机废气,废气采用管道收集,废气收集后经1套二级活性炭吸附处理后经1个21m高排气筒排放。

挤出、冷却:混合后的原料人工投加至挤出机的加料器中,利用挤出机进行加热至100~130℃,环氧树脂、酚醛树脂等物料在该操作温度和挤压力作用下逐渐软化,混合挤出的物料呈粘稠状,通过压片辊被压成一定厚度的片状料,后通过冷却钢带冷却至室温,冷却为间接冷却,使用冷却水,冷却用水对水质无要求,可循环使用,不外排,定期添加新鲜水。投料过程会产生粉尘,粉尘收集后经7#集尘器处理,回收的粉尘交由一般工业固体废物回收公司处理。热熔挤出过程会产生有机废气,有机废气拟进行收集后经1套二级活性炭吸附处理后经1个21m高排气筒排放。

测试:每批次不同的产品需进行测试,取生产线上留样材料 200g 左右利用测试压机和加热盘进行性能测试,测试压机测试流动长度,加热盘为将物料(10g 左右)加热至 170℃,测试其焦化时间。该工序会产生少量有机废气,有机废气拟进行收集后经 1 套二级活性炭吸附处理后经 1 个 21m 高排气筒排放。

粉碎、除铁: 物料经粉碎后利用除铁器进行除铁,除铁器利用磁棒磁选去除物料中的微量铁粉,除铁后的物料卸料至混合料车中,卸料过程会产生粉尘,粉尘收集后经7#集尘器处理,回收的粉尘交由一般工业固体废物回收公司处理。

提升混合、测试、除铁: 利用提成混合机对粉碎后的物料进行混和均匀,混合均匀的物料进行测试,测试不合格的物料,暂存在料车中,部分可以经提升混合利用,不可回用部分交由一般工业固体废物回收公司处理。经测试合格的物料利用除铁器进行除铁,除铁器利用磁棒磁选去除物料中的微量铁粉,除铁后的物料卸料至混合料车中,粉料通过混合料车运送至二楼,卸料过程会产生粉尘,粉尘收集后经7#集尘器处理,回收的粉尘交由一般工业固体废物回收公司处理。

**打饼:**混合后的物料经二楼的加料口,进入一楼的打饼机中,在打饼机的挤压作用下生产出所需要的产品,该操作过程在常温、常压下进行。生产过程中产生的不合格饼料需经过饼料粉碎机重新粉碎后再进行饼料压制。该工序的投料和打饼过程会产生粉尘,一楼和二楼的打饼区域的粉尘经收集后经8#集尘器处理,回收的粉尘交由交由一般工业固体废物回收公司处理。

成品包装:将最终成品包装后送至成品库在5℃条件下保存。

#### 2、现有工程环保手续

广东万木新材料科技有限公司于 2019 年 10 月 10 日取得《关于广东万木新材料科技有限公司年产 LED 封装胶 2700 吨建设项目环境影响报告书的批复》(江江环审[2019]38 号),项目审批规模为年产 LED 封装胶 2700 吨项目分两期建设,其中一期年产 LED 封装胶 1200 吨,二期年产 LED 封装胶 1500 吨。项目已建一期工程,于 2021 年 4 月完成了自主验收,形成《广东万木新材料科技有限公司年产 LED 封装胶 2700 吨迁扩建项目一期工程竣工环境保护自主验收意见》。项目二期工程未建。

广东万木新材料科技有限公司于 2022 年 6 月 29 日取得《关于广东万木新材料科技有限公司年产环氧塑封材料 5000 吨扩建项目环境影响报告表的批复》(江江环审[2022]71 号),项目审批规模为年产环氧塑封材料 5000 吨,该项目未进行验收。

原有项目为排污许可重点管理类别,2020年8月进行了首次申请,2021年2月进行了变更登记,于2022年09月进行了延续登记,其排污许可证编号为:914407045517131387001Q。

#### 3、现有工程污染物实际排放总量

根据现有项目资料,现有项目生产过程中产生的主要污染物有:

废水: 生活污水、生产废水;

**废气**:有机硅树脂生产/醇基燃料生产废气、实验室废气和废水处理设施恶臭、一期锅炉废气、食堂油烟、环氧塑封材料生产废气;

噪声:来自生产设备、空调机组运行时的噪声;

**固体废弃物:** 釜渣、废矿物油、含油抹布、废水处理废包装、废离子交换树脂、气浮、初沉污泥、废活性炭(废气处理)、废活性炭(废水处理)、废有机溶剂(废气处理)、废膜组件、废

有机溶剂(实验室)、活性炭脱附废催化剂、废包装桶、生化污泥、集尘器粉尘、沉降在车间内粉尘、废磁棒、废包装材料、废粉(不合格品)、生活垃圾。

#### (1) 废水

**生活污水:**根据广东万木新材料科技有限公司年产 LED 封装胶 2700 吨迁扩建项目一期工程竣工环境保护自主验收,原有项目生活污水实际排放量为 2494.8t/a。

表 2-8 原有项目生活污水检测结果一览表

环境检测条件: 2021-01-03, 天气状况: 晴; 2021-01-04, 天气状况: 晴。										
检测项目	检测点位	采样日期		检测组	吉果		参考限值			
位 例 切 日			第一次	第二次	第三次	第四次	多石取阻			
рН		2021-01-03	7.69	7.41	7.08	7.62	6-9			
pm		2021-01-04	7.26	7.37	7.51	7.10	0-9			
动植物油		2021-01-03	1.62	1.00	1.29	0.57	100			
4971111797111		2021-01-04	0.78	0.47	1.13	1.15	100			
总磷		2021-01-03	0.46	0.37	0.53	0.49	_			
7CN 194		2021-01-04	0.40	0.52	0.48	0.42	_			
悬浮物	生活污水处	2021-01-03	138	116	136	122	150			
心行70	理后	2021-01-04	112	156	110	124	130			
化学需氧量		2021-01-03	138	176	148	180	220			
化子 而 书 里		2021-01-04	153	184	140	128				
五日生化需氧		2021-01-03	55.7	74.7	60.2	76.2	100			
量		2021-01-04	63.2	68.2	58.2	46.7	100			
氨氮		2021-01-03	7.93	7.65	8.12	8.33	24			
安し灸し		2021-01-04	7.40	7.05	8.54	7.35	24			
处理设施		三级化粪池								

### 备注:

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: pH 无量纲,其余为 mg/L;
- ③ "-"表示不作评价;
- ④参考广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准和江海污水 处理厂进水水质标准的较严者。

生活污水检测结果表明:生活污水预处理后废水中pH、动植物油、总磷、悬浮物、化学需氧量、五日生化需氧量、氨氮的日均排放浓度符合广东省地方标准《水污染物排放限值》 (DB44/26-2001)第二时段三级标准和江海污水处理厂进水水质标准的较严者要求。

表 2-10 原有项目生活污水实际排放量一览表

序号	检测项目	废水排放量/t/a	排放浓度/mg/L	实际排放量/t/a
1	рН		7.38	/
2	动植物油		1	0.002
3	总磷		0.459	0.001
4	悬浮物	2494.8	126.75	0.316
5	化学需氧量		155.875	0.389
6	五日生化需氧量		62.888	0.157
7	氨氮		7.796	0.019

**生产废水:**原有项目生产废水经自建废水处理设施处理后部分回用于生产,部分外排,根据广东万木新材料科技有限公司年产 LED 封装胶 2700 吨迁扩建项目一期工程竣工环境保护自主验收,原有项目生产废水实际排放量为 2930.84t/a。外排废水检测结果如下:

<b>小</b> 境检测条件:	2021-03-11,	天气状况:	青; 2021-03				
检测项目	检测点位	采样日期		检测:			参考
E 04 7/ H			第一次	第二次	第三次	第四次	值
	生产废水	2021-03-11	7.93	7.88	7.69	7.91	_
рН	处理前	2021-03-12	8.11	8.03	7.96	8.12	
pm	生产废水处	2021-03-11	7.35	7.42	7.37	7.39	6.5-
	理后	2021-03-12	7.42	7.51	7.48	7.50	.5
	生产废水处	2021-03-11	8	8	16	16	
色度	理前	2021-03-12	8	16	16	16	
口/文	生产废水处	2021-03-11	ND	ND	ND	ND	30
	理后	2021-03-12	ND	ND	ND	ND	30
	生产废水处	2021-03-11	125	123	130	128	
且泛伽	理前	2021-03-12	122	124	130	132	1 -
悬浮物	生产废水	2021-03-11	8	7	7	6	20
	处理后	2021-03-12	9	7	6	7	30
	生产废水处	2021-03-11	1.40×10 ⁴	1.31×10 ⁴	1.53×10 ⁴	1.26×10 ⁴	
//. W. 武侯 目	理前	2021-03-12	1.62×10 ⁴	1.50×10 ⁴	1.38×10 ⁴	1.30×10 ⁴	] -
化学需氧量	生产废水处	2021-03-11	28	25	31	26	
	理后	2021-03-12	32	30	27	24	60
	生产废水处	2021-03-11	$4.85 \times 10^{3}$	$3.75 \times 10^{3}$	5.00×10 ³	$3.95 \times 10^{3}$	
五日生化需氧	理前	2021-03-12	$4.45 \times 10^{3}$	4.35×10 ³	$3.35 \times 10^{3}$	$3.20 \times 10^{3}$	-
量	生产废水	2021-03-11	4.3	4.0	4.4	3.8	10
	处理后	2021-03-12	4.2	4.4	4.1	3.3	10
	生产废水	2021-03-11	1.71	1.48	1.32	1.51	
	处理前	2021-03-12	1.27	1.31	1.16	1.24	-
氨氮	生产废水处	2021-03-11	0.167	0.154	0.115	0.148	8
	理后	2021-03-12	0.125	0.100	0.109	0.136	
	生产废水处		0.30	0.35	0.27	0.30	
-Me made 1.1	理前	2021-03-12	0.42	0.39	0.41	0.38	-
磷酸盐	生产废水处	2021-03-11	0.03	0.05	0.02	0.07	
	理后	2021-03-12	0.09	0.11	0.08	0.09	0.5
	生产废水处		163	158	146	171	
	理前	2021-03-12	164	155	169	176	-
总硬度	生产废水	2021-03-11	64	62	76	55	
	处理后	2021-03-12	68	71	59	62	450
	生产废水处	2021-03-11	ND	ND	ND	ND	
	理前	2021-03-12	ND	ND	ND	ND	-
甲苯 ª	生产废水处	2021-03-11	ND	ND	ND	ND	
	理后	2021-03-12	ND	ND	ND	ND	0.1
	生产废水处	2021-03-12	$4.60 \times 10^3$	$2.94 \times 10^{3}$	$2.98 \times 10^{3}$	$2.48 \times 10^{3}$	
	理前	2021-03-11	$2.48 \times 10^{3}$	$2.53 \times 10^3$	$2.46 \times 10^3$	$2.49 \times 10^{3}$ $2.09 \times 10^{3}$	-
总有机碳 b	生产废水处	2021-03-12	8.0	6.8	6.5	6.6	
	理后	2021-03-11	5.2	10.7	9.8	10.7	20
	生川				l		 
处理コ	一步	调节池-气浮-活性污泥-接					
	/ .	エコロ エナノサ カレーイナー	## +U1/LJ B=  <b>V </b>		マ 3000 175 = ケト中川	・モレス・多名が、	ひしひとーク

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: pH 无量纲, 其余为 mg/L;
- ③ "ND"表示检测结果小于检出限, "-"表示不作评价:
- ④参考《城市污水再生利用 工业用水水质》(GB/T 19923-2005)表1 再生水用作工业用水水源的水质标准中洗涤用水标准、广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准、《合成树脂工业污染物排放标准》(GB 31572-2015)表1 水污染物排放限值(直接排放)和江海污水处理厂进水水质标准的较严者;
- ⑤ "a"表示已分包至江门市中环检测技术有限公司检测,其资质证书编号为: 201919124451; "b"表示已分包至广东斯戈尔检测技术有限公司检测,其资质证书编号: 201919124408。

表 2-12	原有项目生	产废水检测结果	一览表
1X 2-12			<u> </u>

环境检测条件: 2024-06-11, 天气状况: 阴天;								
检测项目	检测点位	采样日期	检测结果	参考限值				
化学需氧量	生产废水处理后	2024-06-11	29	60				
氨氮	土)及小处垤归 	2024-00-11	0.089	8				

生产废水检测结果表明:生产废水经处理后废水中 pH、色度、悬浮物、化学需氧量、五日生化需氧量、氨氮、磷酸盐、甲苯、总硬度、总有机碳的日均排放浓度符合《城市污水再生利用工业用水水质》(GB/T19923-2005)中工艺与产品用水的水质标准、广东省地方标准《水污染物排放限值》(DB4426-2001)第二时段一级标准与《合成树脂工业污染物排放标准》(GB31572-2015)表1水污染物排放限值(直接排放)、江海污水处理厂进水水质标准的较严者要求。

表 2-13 原有项目生产废水实际排放量一览表

序号	检测项目	废水排放量/t/a	排放浓度/mg/L	实际排放量/t/a
1	рН		7.43	/
2	色度		/	/
3	悬浮物		7.125	0.021
4	化学需氧量		27.875	0.082
5	五日生化需氧量	2020.84	4.063	0.012
6	氨氮	2930.84	0.132	0.0004
7	磷酸盐		0.068	0.0002
8	总硬度		64.625	/
9	甲苯		0.0014	0.000004
10	总有机碳		8.038	0.024
32 III	+++++++++++++++++++++++++++++++++++++++	よん , し, 7日 /士 ソ ・4 ・4	/ <b>T</b>	•

|注: 甲苯未检出,按检出限值一半计,检出限值为 1.4ug/L。

#### (2) 废气

根据东利检测(广东)有限公司于 2021 年 01 月 03 日至 2021 年 01 月 04 日对现有项目有机硅树脂生产/醇基燃料生产废气、实验室废气和废水处理设施恶臭 DA001、一期锅炉废气 DA002、饭堂油烟 DA004 以及厂界无组织废气进行监测和于 2024 年 06 月 11 日对现有项目环氧塑封材料生产废气 DA005 进行监测(详细可阅附件 6),废气监测结果如下:

表 2-14 DA001 有组织废气监测结果

	环境检	测条件	‡: 2021-01-03,	天气状	况: 晴,	环境	温度:	24.5°C,	大气压:	101.9kPa;	
			2021-01-04,	天气状	况: 晴,	环境	温度:	25.2°C,	大气压:	101.7kPa。	
	监测点位		检测项目		采样日期		检测结果				参考
			一位例次日	位例均日		不作口朔 [		次	第二次	第三次	限值
	废水	处	低浓度颗粒物	浓度	2020-0	1-03	43.	8	44.6	51.5	-

站	理前			2021-01-04	47.6	49.0	54.2	
	1#	北田岭光塚		2020-01-03	24.6	25.7	21.1	
		非甲烷总烃		2021-01-04	22.0	24.2	18.3	-
		VOCs		2020-01-03	119	139	125	
		v OCs		2021-01-04	78.0	114	110	
		甲苯*		2020-01-03	4.74	6.36	5.14	
		中本*		2021-01-04	5.01	6.49	4.91	-
		tt Zi librash		2020-01-03	4.74	6.36	5.14	
		苯系物*		2021-01-04	5.01	6.49	4.91	-
		口形		2020-01-03	10	8	13	
		甲醇		2021-01-04	11	11	13	-
		臭气浓度	:	2020-01-03	2290	3090	3090	
		关气水及	-	2021-01-04	4168	3090	4168	-
		标干风量 m	3/h	2020-01-03	6841	6724	6563	
		小小人里	1 /11	2021-01-04	6484	6693	6435	
		低浓度颗粒物		2020-01-03	46.5	48.1	49.1	
				2021-01-04	46.8	43.3	40.1	
		非甲烷总烃		2020-01-03	18.4	20.3	15.7	
		11年7月11日11日		2021-01-04	18.2	19.6	15.2	
		VOCs		2020-01-03	141	115	97.7	
		VOCS		2021-01-04	147	145	136	
实验		甲苯*	浓度	2020-01-03	6.46	6.47	7.06	
室、生		<b>丁</b> 本		2021-01-04	6.39	7.33	6.31	
产车间	前 2#	苯系物*		2020-01-03	6.46	6.47	7.06	
		本 尔 初 ·		2021-01-04	6.39	7.33	6.31	
		甲醇		2020-01-03	6	8	7	_
		1 117		2021-01-04	9	7	8	
		臭气浓度	•	2020-01-03	1737	1318	977	_
		— — — — — — — — — — — — — — — — — — —	-	2021-01-04	1318	1318	977	
		标干风量 m	1 ³ /h	2020-01-03	8267	8469	8604	_
		74 1 / 122	- ·	2021-01-04	8416	8226	8577	
			浓度	2020-01-03	14.5	10.6	12.1	20
		低浓度颗粒物		2021-01-04	14.1	15.8	11.0	
			排放	2020-01-03	0.25	0.19	0.23	_
1			速率	2021-01-04	0.27	0.29	0.20	
	1		24 175	2020-01-03	0.79	0.63	0.61	60
			浓度	2021 01 04	0.66	0.70	1161	
		非甲烷总烃		2021-01-04	0.66	0.58	0.62	
		非甲烷总烃	排放	2020-01-03	0.014	0.011	0.012	
<b>房水</b>		非甲烷总烃		2020-01-03 2021-01-04	0.014 0.013	0.011 0.011	0.012 0.011	-
废水站、实		非甲烷总烃	排放速率	2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03	0.011 0.011 4.83	0.012 0.011 7.53	- 80
站、实	处理		排放速率	2020-01-03 2021-01-04 2020-01-03 2021-01-04	0.014 0.013 6.03 5.78	0.011 0.011 4.83 5.89	0.012 0.011 7.53 6.97	80
站、实 验室、	处理 后	非甲烷总烃 VOCs	排放 速率 浓度 排放	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03 5.78 0.11	0.011 0.011 4.83 5.89 0.086	0.012 0.011 7.53 6.97 0.15	80
站、实 验室、 生产	处理		排放速率	2020-01-03 2021-01-04 2020-01-03 2021-01-04	0.014 0.013 6.03 5.78	0.011 0.011 4.83 5.89	0.012 0.011 7.53 6.97	80
站、实 验室、	处理		排放 速 液度 排放率	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03 5.78 0.11	0.011 0.011 4.83 5.89 0.086	0.012 0.011 7.53 6.97 0.15	-
站、实 验室、 生产	处理	VOCs	排放 速率 浓度 排放	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04	0.014 0.013 6.03 5.78 0.11 0.11	0.011 0.011 4.83 5.89 0.086 0.11	0.012 0.011 7.53 6.97 0.15 0.12	80
站、实 验室、 生产	处理		排放 速 液度 排放率	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03 5.78 0.11 0.11 0.458	0.011 0.011 4.83 5.89 0.086 0.11 0.450	0.012 0.011 7.53 6.97 0.15 0.12 0.615	-
站、实 验室、 生产	处理	VOCs	排放 速 液 接 旅 遊 率 度	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04	0.014 0.013 6.03 5.78 0.11 0.11 0.458 0.379	0.011 0.011 4.83 5.89 0.086 0.11 0.450 0.731	0.012 0.011 7.53 6.97 0.15 0.12 0.615 0.404	-
站、实 验室、 生产	处理	VOCs	排速 浓度 排速 浓 排速	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03 5.78 0.11 0.11 0.458 0.379 8.0×10 ⁻³	0.011 0.011 4.83 5.89 0.086 0.11 0.450 0.731 8.0×10 ⁻³	0.012 0.011 7.53 6.97 0.15 0.12 0.615 0.404 0.012	8
站、实 验室、 生产	处理	VOCs 甲苯*	排放 速 液度 排放率 浓度 排放	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04	0.014 0.013 6.03 5.78 0.11 0.11 0.458 0.379 8.0×10 ⁻³ 7.2×10 ⁻³	0.011 0.011 4.83 5.89 0.086 0.11 0.450 0.731 8.0×10 ⁻³ 0.013	0.012 0.011 7.53 6.97 0.15 0.12 0.615 0.404 0.012 7.2×10 ⁻³	-
站、实 验室、 生产	处理	VOCs	排速 浓度 排速 浓 排速	2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03 2021-01-04 2020-01-03	0.014 0.013 6.03 5.78 0.11 0.11 0.458 0.379 8.0×10 ⁻³ 7.2×10 ⁻³ 0.458	0.011 0.011 4.83 5.89 0.086 0.11 0.450 0.731 8.0×10 ⁻³ 0.013 0.450	0.012 0.011 7.53 6.97 0.15 0.12 0.615 0.404 0.012 7.2×10 ⁻³ 0.615	8

		甲醇	浓度	2020-01-03	ND	ND	ND	190
			1N/X	2021-01-04	ND	ND	ND	190
			排放	2020-01-03				2.2
			速率	2021-01-04	_	_	_	2.2
		臭气浓度		2020-01-03	229	416	309	2000
		关 (松)又		2021-01-04	309	173	229	2000
		左工口量 ***	두고교투3/1.		17420	17886	19270	
		标干风量 m³/h		2021-01-04	19023	18321	17819	-
		排	气筒高原	度	15m			
		处理设施			活性炭吸附催化燃烧			

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: 臭气浓度无量纲, 其余为 mg/m³, 排放速率单位: kg/h;
- ③"ND"表示检测结果小于检出限,"—"表示不作检测,"-"表示不作评价;
- ④"*"表示已分包至东利检测(广东)有限公司检测,其资质证书编号: 202019125405;
- ⑤VOCs、苯系物*参考《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)表 2 大气污染物特别排放限值;
- ⑥非甲烷总烃、颗粒物参考《合成树脂工业污染物排放标准》(GB 31572-2015)表 5 大气污染物特别排放限值与《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB37824-2019)表 2 大气污染物特别排放限值(胶粘剂制造)较严者;
- ⑦甲醇参考广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段二级标准,因排气筒高度不能达到高出周围 200m 半径范围内最高建筑 5m 以上的要求,排放速率应按对应限值的 50%计算;
- ⑧甲苯*参考《合成树脂工业污染物排放标准》(GB 31572-2015)表 5 大气污染物特别排放限值:
- ⑨臭气浓度参考《恶臭污染物排放标准》(GB14554-93)表 2 恶臭污染物排放标准值。

检测结果表明:项目各车间的有机废气经收集处理后,非甲烷总烃、颗粒物的排放浓度符合《合成树脂工业污染物排放标准》(GB31572-2015)表 5 大气污染物特别排放限值和《涂料、油墨及粘胶剂工业大气污染物排放标准》(GB37824-2019)表 2 大气污染物特别排放限值(胶粘剂制造)的较严者要求; TVOC、苯系物的排放浓度符合《涂料、油墨及粘胶剂工业大气污染物排放标准》(GB37824-2019)表 2 大气污染物特别排放限值(胶粘剂制造)要求; 甲苯的排放浓度符合《合成树脂工业污染物排放标准》(GB31572-2015)表 5 大气污染物特别排放限值的要求; 甲醇的排放浓度、排放速率符合广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级排放标准要求; 臭气浓度的最大值符合《恶臭污染物排放标准》(GB14554-1993)表 2 恶臭污染物排放标准值。

表 2-15 DA002 有组织废气监测结果

环境检测条件: 2021-01-03,天气状况: 晴,环境温度: 24.5℃,大气压: 101.9kPa; 2021-01-04,天气状况: 晴,环境温度: 25.2℃,大气压: 101.7kPa。

监测点位 检测		项目 采样日期				参考	
血侧从业	122.火	-   -   -   -   -  -  -  -  -  -  -	不任口朔	第一次	第二次	第三次	限值
		实测浓度	2020-01-03	87	84	80	
			2021-01-04	86	84	81	-
蒸汽锅炉处理	   氮氧化物	排放速率	2020-01-03	0.14	0.14	0.11	
	炎(丰(化初	111.从还华	2021-01-04	0.13	0.12	0.11	-
后		折算浓度	2020-01-03	89	86	83	150
		1月异似)这	2021-01-04	88	86	83	130
	二氧化硫	实测浓度	2020-01-03	ND	ND	ND	-

		2021-01-04	ND	ND	ND		
	排放速率	2020-01-03			_		
	111 从	2021-01-04		_	_	-	
	七色冰声	2020-01-03			_	50	
	折算浓度	2021-01-04		_	_	50	
	实测浓度	2020-01-03	12.5	11.1	10.9		
	<b>安侧</b> 似反	2021-01-04	12.4	10.2	11.6	-	
低浓度颗	排放速率	2020-01-03	0.020	0.019	0.015		
粒物	1	2021-01-04	0.019 0.015 0.016	-			
	折算浓度	2020-01-03	12.8	11.4	11.3	20	
		2021-01-04	12.7	10.4	11.9	20	
烟气黑	林格曼级	2020-01-03	<1	<1	<1	1	
度	数	2021-01-04	<1	<1	<1	1	
标干风量 m³/h		2020-01-03	1579	1718	1379		
	、里 III ^{-/} II	2021-01-04	1539	1482	1392	-	
今怎	〔量%	2020-01-03	3.9	4.0	4.1		
白 丰	(里 /0	2021-01-04	3.9	3.9	4.0	-	
烟气	温度℃	2020-01-03	81.3	81.5	82.7		
NA (1	m/文 C	2021-01-04	82.3	82.8	82.8	_	
   今源	是量%	2020-01-03	6.1	6.2	6.2	_	
	2年/0	2021-01-04	6.3	6.3	6.4	_	
   流词	ᡛ m/s	2020-01-03	6.25	6.81	5.49	_	
7/11/20 111/3		2021-01-04	6.13	5.91	5.56		
	排气筒高度	度		231	m		
	燃料		天然气+醇基燃料(甲醇)				
	处理设施		/				
•			-				

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: mg/m³, 排放速率单位: kg/h;
- ③"ND"表示检测结果小于检出限,"—"表示不作检测,"-"表示不作评价;
- ④参考广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建锅炉大气污染物排放浓度限值中燃气和燃油锅炉标准的较严者。

检测报告表明:锅炉废气颗粒物、二氧化硫、氮氧化物和林格曼黑度有组织排放均符合广东省《锅炉大气污染物排放标准》(DB44/765-2019)新建燃气锅炉与燃油锅炉标准的较严者要求。

# 表 2-16 DA004 有组织废气监测结果

环境检测条件: 2021-01-03,天气状况: 晴,环境温度: 24.5℃,大气压: 101.9kPa; 2021-01-04,天气状况: 晴,环境温度: 25.2℃,大气压: 101.07kPa。

烟囱高	度: 6m	基准灶头数: 0.7 个			治理方式:复合式低空油烟净化器			
检测点位	采样日期	排风量	实测油烟排	实测油烟排放浓度		放浓度	参考限值	
1所1公1公1万	水件口朔 	m ³ /h	检测结果	均值	检测结果	均值		
		805	3.17		1.82			
		779	2.97	2.93	1.65			
	2021-01-03	759	4.11		2.23	1.66		
		787	1.86		1.05			
   油烟处理前		847	2.54		1.54		-	
加州处理制		814	5.09		2.96			
		825	3.35		1.97			
	2021-01-04	775	3.42	3.24	1.89	1.86		
		803	2.64		1.52			
		780	1.71		0.95			

		1136	0.15		0.12		
		1188	0.23		0.19		
	2021-01-03	1224	0.25	0.21	0.22	0.18	
		1250	0.25		0.23		
油烟处理后		1099	0.18		0.14		2.0
個		1110	0.38		0.30		2.0
		1125	0.23		0.18		
	2021-01-04	1062	0.33	0.29	0.25	0.22	
		1087	0.23		0.18		
		1071	0.27		0.21		

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: mg/m³;
- ③ "-"表示不作评价;
- ④若五次检测结果中任何一个数据小于最大值的四分之一,则该数据为无效值,不能参与平均值计算;
- ⑤参考《饮食业油烟排放标准(试行)》(GB 18483-2001)标准。

检测结果表明: 厨房油烟经油烟净化器处理后排放浓度符合《饮食业油烟排放标准》(GB8483-2001)要求。

表 2-17 DA005 有组织废气监测结果

			检测结果	参考限制		
监测位置	检测项目	排放浓度	排放速率	标干流	浓度	排放速
		/mg/m³	/kg/h	量/m³/h	$/mg/m^3$	率kg/h
	氮氧化物	ND	/	15670	200	/
DA005 (处理后)	二氧化硫	ND	/	15679	200	/
	VOCs	2.17	0.035	15929	80	/

检测结果表明: DA005 氮氧化物、二氧化硫可达到《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB37824-2019)表 3 燃烧装置大气污染物排放限值、有机废气可达到《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB37824-2019)表 2 大气污染物特别排放限值及《合成树脂工业污染物排放标准》(GB 31572-2015)表 5 大气污染物特别排放限值中的较严者。

# 表 2-18 现有项目无组织废气监测结果

环境检测条件: 2021-01-03,风向: 东北,风速: 0.8-1.7m/s,气温: 23.6-24.5℃,大气压: 101.8-101.9kPa; 2021-01-04,风向: 东北,风速: 0.8-1.7m/s,气温: 25.7-26.6℃,大气压: 101.6-101.7kPa。

检测点位	   检测项目	. 采样日期		检测结果		参考限值	
1四7四月1	位例切日		第一次	第二次	第三次	多有限阻	
	北田岭丛坂	2021-01-03	0.34	0.31	0.29	4.0	
	非甲烷总烃	2021-01-04	0.28	0.28	0.28	4.0	
	甲苯*	2021-01-03	ND	ND	ND	0.8	
	下本*	2021-01-04	ND	ND	ND	0.8	
1. 5 4 1 11	甲醇	2021-01-03	ND	ND	ND	12	
上风向 1#		2021-01-04	ND	ND	ND		
	颗粒物	2021-01-03	0.267	0.267	0.383	1.0	
	木灰木工 1/0	2021-01-04	0.267	0.400	0.383		
	臭气浓度	2021-01-03	<10	<10	<10	20	
	<b>英(</b>	2021-01-04	<10	<10	<10	20	
下风向 2#	非甲烷总烃	2021-01-03	0.83	0.79	0.72	4.0	
` <i> </i> /\(  +   2#		2021-01-04	0.50	0.50	0.51	4.0	

甲華								
中醇		田苹*	2021-01-03	ND	ND	ND	0.0	
中野		十一十二	2021-01-04	ND	ND	ND	0.8	
取粒物   2021-01-04   ND   ND   ND   ND   2021-01-03   0.433   0.533   0.483   0.5033   0.483   0.5057   0.517   1.0   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.567   0.517   0.507   0.517   0.507   0.517   0.507   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.54   0.55   0.44   0.44   0.58   0.44   0.44   0.59   0.448   0.76   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.435   0.500   0.450   0.550   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.500   0.450   0.550   0.500   0.450   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0.550   0		田≕	2021-01-03	ND	ND	ND	12	
大阪市   大阪		中野	2021-01-04	ND	ND	ND	12	
東气浓度     2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-03 2021-01-03 2021-01-04 2021-01-		田玉水子外加	2021-01-03	0.433	0.533	0.483	1.0	
現代放皮   2021-01-04   12   13   15   20     非甲烷总烃   2021-01-03   0.63   0.61   0.54     2021-01-04   1.00   1.01   1.04     甲苯*   2021-01-03   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-04   ND   ND   ND     2021-01-04   ND   ND   ND     2021-01-04   ND   ND   ND     2021-01-03   0.417   0.450   0.483     2021-01-04   0.467   0.500   0.435     2021-01-03   15   15   17     2021-01-04   15   15   16     2021-01-03   0.82   0.84   0.76     2021-01-04   ND   ND   ND   ND     2021-01-03   ND   ND   ND   ND     日華*   2021-01-03   ND   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-04   ND   ND   ND   ND     東極物   2021-01-03   0.500   0.467   0.550     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   0.567   0.483   0.433     2021-01-04   13   15   15     2021-01-04   0.567   0.483   0.433     2021-01-04   0.500   0.49   0.48     2021-01-04   0.500   0.49   0.48     2021-01-03   0.44   0.44   0.39     2021-01-04   0.70   0.70   0.69     2021-01-04   0.58   0.45   0.44     2021-01-04   0.58   0.45   0.44     2021-01-03   0.44   0.43   0.40     2021-01-04   0.58   0.45   0.44     2021-01-03   0.44   0.43   0.40		秋松初	2021-01-04	0.467	0.567	0.517	1.0	
非甲烷总烃   2021-01-04   12   13   15     2021-01-04   1.00   1.01   1.04     甲苯*   2021-01-04   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-03   ND   ND   ND   ND     2021-01-04   0.467   0.500   0.435     2021-01-04   15   15   17     2021-01-04   15   15   16     2021-01-04   15   15   16     2021-01-04   0.73   0.73   0.78     2021-01-04   ND   ND   ND   ND     日華*   2021-01-03   ND   ND   ND   ND     2021-01-04   0.567   0.483   0.433     2021-01-04   13   15   15     2021-01-04   13   15   15     2021-01-04   0.567   0.483   0.433     2021-01-04   0.507   0.483   0.433     2021-01-04   0.507   0.484   0.444     2021-01-03   0.444   0.444   0.39     2021-01-04   0.500   0.497   0.488     2021-01-04   0.700   0.700   0.699     2021-01-04   0.700   0.700   0.699     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-03   0.444   0.43   0.400     2021-01-04   0.588   0.45   0.444     2021-01-03   0.444   0.43   0.400     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-03   0.444   0.43   0.400     2021-01-03   0.444   0.43   0.400     2021-01-03   0.444   0.43   0.400     2021-01-04   0.588   0.45   0.444     2021-01-03   0.444   0.43   0.400     2021-01-03   0.444   0.43   0.400     2021-01-03   0.444   0.43   0.400     2021-01-03   0.444   0.443   0.440     2021-01-04   0.588   0.45   0.444     2021-01-05   0.444   0.444   0.444   0.444     2021-01-04   0.588   0.45   0.444     2021-01-04   0.588   0.45   0.444     2021-01-05   0.444   0.444   0.444   0.444     2		自与冲击	2021-01-03	16	13	15	20	
中原に応   中本*   2021-01-04   1.00   1.01   1.04   1.00     甲本*   2021-01-03   ND   ND   ND   ND     2021-01-04   ND   ND   ND   ND     2021-01-03   0.417   0.450   0.483   1.0     2021-01-04   15   15   17   20     2021-01-04   15   15   16   20     2021-01-04   15   15   16   20     非甲烷总烃   2021-01-03   0.82   0.84   0.76   4.0     日本*   2021-01-04   ND   ND   ND   ND   ND   ND     日本*   2021-01-04   ND   ND   ND   ND   ND   ND   ND   N		吴 气	2021-01-04	12	13	15	20	
下风向 3#		北田岭丛区	2021-01-03	0.63	0.61	0.54	4.0	
下风向 3#		非甲烷总烃	2021-01-04	1.00	1.01	1.04	4.0	
下风向 3# 甲醇 2021-01-04 ND		ш + +	2021-01-03	ND	ND	ND	0.0	
下风向 3#   中野   2021-01-04   ND   ND   ND   ND   12		甲本*	2021-01-04	ND	ND	ND	0.8	
大阪向 4#   非甲烷总烃   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	工员台 2//	口事	2021-01-03	ND	ND	ND	10	
類粒物臭气液度	下风问 3#	中 野	2021-01-04	ND	ND	ND	12	
類粒物臭气液   2021-01-04   0.467   0.500   0.435   2021-01-03   15   15   17   20   20   15   15   16   20   15   15   16   20   15   15   16   20   15   15   16   20   15   15   16   20   20   20   20   20   20   20   2			2021-01-03	0.417	0.450	0.483	1.0	
度     2021-01-03     15     15     17     20       下风向 4#     非甲烷总烃     2021-01-03     0.82     0.84     0.76     4.0       下风向 4#     甲華*     2021-01-04     0.73     0.73     0.78     4.0       甲苯*     2021-01-03     ND     ND     ND     ND       2021-01-04     ND     ND     ND     ND     ND       2021-01-04     ND     ND     ND     ND     ND     ND       2021-01-04     ND			2021-01-04	0.467	0.500	0.435	1.0	
非甲烷总烃     2021-01-04     15     15     16       2021-01-03     0.82     0.84     0.76       2021-01-04     0.73     0.73     0.78       4.0       甲苯*     2021-01-03     ND     ND     ND       2021-01-04     ND     ND     ND     ND       期粒物     2021-01-03     0.500     0.467     0.550       2021-01-04     ND     ND     ND     ND       製气浓度     2021-01-03     0.500     0.467     0.550       2021-01-04     0.567     0.483     0.433     1.0       臭气浓度     2021-01-03     13     14     15       2021-01-04     13     15     15     20       车间外 1#     非甲烷总烃     2021-01-03     0.43     0.42     0.44       车间外 2#     非甲烷总烃     2021-01-03     0.44     0.44     0.39       车间外 3#     非甲烷总烃     2021-01-03     1.19     1.20     1.20       在间外 4#     非田烷总烃     2021-01-03     0.44     0.43     0.40			2021-01-03	15	15	17	20	
中球   1			2021-01-04	15	15	16	20	
下风向 4#		北田焢当区	2021-01-03	0.82	0.84	0.76	4.0	
下风向 4# 甲醇 2021-01-04 ND		非中灰心灶	2021-01-04	0.73	0.73	0.78	4.0	
下风向 4# 甲醇 2021-01-04 ND		田苹*	2021-01-03	ND	ND	ND	0.8	
下风同 4# 中野   2021-01-04   ND   ND   ND   ND   ND   ND   2021-01-03   0.500   0.467   0.550   2021-01-04   0.567   0.483   0.433   0.433   1.0   2021-01-04   13   15   15   20   15   15   20   15   15   20   15   15   20   15   15   20   15   15   15   20   15   15   15   15   15   15   15   1		十本	2021-01-04	ND	ND	ND	0.8	
類粒物   2021-01-04   ND   ND   ND   ND   ND   ND   ND   N	下回点 4#	田神	2021-01-03	ND	ND	ND	12	
製植物     2021-01-04     0.567     0.483     0.433       臭气浓度     2021-01-03     13     14     15       2021-01-04     13     15     15       车间外 1#     非甲烷总烃     2021-01-03     0.43     0.42     0.44       车间外 2#     非甲烷总烃     2021-01-04     0.50     0.49     0.48       车间外 2#     非甲烷总烃     2021-01-03     0.44     0.44     0.39       空21-01-04     0.70     0.70     0.69       空21-01-03     1.19     1.20     1.20       空21-01-04     0.58     0.45     0.44       车间外 4#     非甲烷总烃     2021-01-03     0.44     0.43     0.40		十	2021-01-04	ND	ND	ND	12	
集气浓度     2021-01-04     0.567     0.483     0.433       臭气浓度     2021-01-03     13     14     15       2021-01-04     13     15     15       车间外 1#     非甲烷总烃     2021-01-03     0.43     0.42     0.44       车间外 2#     非甲烷总烃     2021-01-04     0.50     0.49     0.48       车间外 3#     非甲烷总烃     2021-01-03     0.44     0.44     0.39       空21-01-04     0.70     0.70     0.69       空21-01-04     0.58     0.45     0.44       车间外 4#     非甲烷总烃     2021-01-03     0.44     0.43     0.40		甲百平宁 州加	2021-01-03	0.500	0.467	0.550	1.0	
実气浓度     2021-01-04     13     15     15       车间外 1#     非甲烷总烃     2021-01-03     0.43     0.42     0.44       车间外 2#     非甲烷总烃     2021-01-04     0.50     0.49     0.48       车间外 2#     非甲烷总烃     2021-01-03     0.44     0.44     0.39       空21-01-04     0.70     0.70     0.69       空21-01-04     0.58     0.45     0.44       车间外 4#     非甲烷总烃     2021-01-03     0.44     0.43     0.40		<b>木灰木丛 1</b> 27	2021-01-04	0.567	0.483	0.433	1.0	
车间外 1#     非甲烷总烃     2021-01-03		自与沈帝	2021-01-03	13	14	15	20	
年间外 1# 非甲烷总烃 2021-01-04 0.50 0.49 0.48		英(松)文	2021-01-04	13	15	15	20	
车间外 2#     非甲烷总烃     2021-01-03	左间丛 1#	北田煌首区	2021-01-03	0.43	0.42	0.44		
年间外 2# 非甲烷总烃 2021-01-04 0.70 0.70 0.69 车间外 3# 非甲烷总烃 2021-01-03 1.19 1.20 1.20 2021-01-04 0.58 0.45 0.44 0.43 0.40 6.0	十四71.1#	十十分心态压	2021-01-04	0.50	0.49	0.48		
本间外 3#     非甲烷总烃     2021-01-04     0.70     0.70     0.69       车间外 3#     非甲烷总烃     2021-01-03     1.19     1.20     1.20       左间外 4#     非甲烷总烃     2021-01-04     0.58     0.45     0.44       本间外 4#     非甲烷总烃     2021-01-03     0.44     0.43     0.40	左间丛 2#	北田煌台区	2021-01-03	0.44	0.44	0.39		
车间外 3#     非甲烷总烃     2021-01-03     1.19     1.20     1.20       2021-01-04     0.58     0.45     0.44       车间外 4#     非甲烷总烃     2021-01-03     0.44     0.43     0.40	十回7下2#	十四年2世 11年 11年 11年 11年 11年 11年 11年 11年 11年 11		0.70	0.70	0.69	6.0	
を回外 4世 非田信 草塚 2021-01-03 0.44 0.43 0.40	左间丛 2#	北田煌台区	2021-01-03	1.19	1.20	1.20	6.0	
	十四7下3#	11 中/元心)   11   12   13   13   13   13   13   13	2021-01-04	0.58	0.45	0.44		
十四万十五 日 T ML 広 X 2021-01-04 0.44 0.45 0.45	左间丛 4#	非田焢当尽	2021-01-03	0.44	0.43	0.40		
	十四71 4#		2021-01-04	0.44	0.45	0.45		

- ①本次检测结果只对当次采集样品负责;
- ②浓度单位: mg/m³;
- ③"ND"表示检测结果小于检出限;
- ④"**"表示已分包至东利检测(广东)有限公司检测,其资质证书编号: 202019125405;
- ⑤车间外 1#、2#、3#、4#中的非甲烷总烃参考《挥发性有机物无组织排放控制标准》(GB 37822-2019)表A.1;上风向 1#、下风向 2#、3#、4#的非甲烷总烃参考《合成树脂工业污染物排放标准》(GB 31572-2015)表9企业边界大气污染物浓度限值;
- ⑥甲苯*、颗粒物参考《合成树脂工业污染物排放标准》(GB 31572-2015)表 9 企业边界大气污染物浓度限值;
- ⑦甲醇参考广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值;
- ⑧臭气浓度参考《恶臭污染物排放标准》(GB 14554-93)表 1 恶臭污染物厂界标准值二级新 扩改建标准值。

检测结果表明: 厂界的非甲烷总烃无组织排放监控最高浓度值符合《合成树脂工业污染物排放标准》(GB31572-2015)和《挥发性有机物无组织排放控制标准》(GB37822-2019)的较

严者要求; 甲苯、颗粒物的无组织排放监控最高浓度值符合《合成树脂工业污染物排放标准》 (GB 31572-2015)表9企业边界大气污染物浓度限值的要求; 甲醇的无组织排放监控最高浓度值符合广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值的要求; 臭气浓度符合《恶臭污染物排放标准》(GB 14554-93)表1二级新扩改建标准值的要求。

#### 原有项目废气污染物实际排放量核算:

结合现有项目的监测报告(见附件 6)中项目排放口排放数据,本环评采用实测法核算现有项目有机硅树脂生产/醇基燃料生产废气、实验室废气和废水处理设施恶臭废气、一期锅炉废废气、饭堂油烟、环氧塑封材料硅油加热、挤出废气实际排放量。

参考《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ 1103—2020),采用手工监测实测法应根据每次手工监测时段内每小时污染物的平均排放浓度、平均排气量、运行时间核算污染物排放量按一下公式计算:

$$E = c \times q \times h \times 10^{-9}$$

式中: E—核算时段内某主要排放口某项大气污染物的实际排放量, t;

c—核算时段内某主要排放口某项大气污染物的实测小时加权平均排放浓度(标态), $mg/Nm^3$ ;

q—核算时段内某主要排放口的标准状态下小时平均干排气量,Nm³/h;

h—核算时段内某主要排放口的大气污染物排放时间,h

根据上述公式及原有项目检测报告,原有项目实际排放量见下表:

表 2-19 原有项目实际排放量表

		仅 2-17	炒口大炒	洲从里水			
)	项目	排放浓度	排气量	排放	有组织排	收集效	总排
		/mg/m³	$/m^3/h$	时间/h	放量/t	率/%	放量/t
有机硅树脂	机硅树脂 低浓度颗粒物 13.0				1.886	100%	1.886
生产/醇基	非甲烷总烃	0.648		7920	0.094	100%	0.094
燃料生产废	VOCs	6.172			0.894	100%	0.894
气、实验室	甲苯*	0.506	18290		0.073	100%	0.073
废气和废水	苯系物*	0.506			0.073	100%	0.073
处理设施恶	甲醇	1		0.145	100%	0.145	
臭 DA001	臭气浓度	278			278	100%	278
. 地织协商	氮氧化物	85.833			0.944	100%	0.944
一期锅炉废 气 DA002	二氧化硫	15	1515	7260	0.016	100%	0.016
DA002	低浓度颗粒物	11.75			0.126	100%	0.126
饭堂油烟 DA004	油烟	0.25	1135	1500	0.0004	80%	0.0005
环氧塑封材	VOCs	2.17			0.274	90%	0.304
料硅油加	氮氧化物	/	15929	7920	/	90%	/
热、挤出废 气 DA005	二氧化硫	/	13929	1920	/	90%	/
<b> </b> 备注:二氧化	比硫和甲醇未检出	,按其检出限	值一半计	0			

# (2) 噪声

根据根据东利检测(广东)有限公司于 2024 年 06 月 29 日对现有项目的监测(监测报告见附件 6),噪声产生情况见下表。

表 2-20 现有项目噪声监测结果 单位 dB(A)

测点	监测位置	采样日 主要 检测结果 dB(A) 检测结果 dB(		检测结果 dB(A)		₹ dB (A)	
编号	血侧型具	期	声源	昼间	夜间	昼间	夜间
1#	厂界外北侧一米处		生	52.2	43.4		
2#	厂界外北侧一米处	2024-	产、	53.5	45.8	65	55
3#	厂界外西侧一米处	06-29	交通	57.8	47.0	0.5	55
4#	厂界外西侧一米处		噪声	55.4	42.0		

由检测数据可知,原有项目厂界四周昼夜间噪声排放均可达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求。

#### (3) 固废

根据现有项目资料,现有工程员工生活垃圾产生量约为 28.3t/a,实际交由环卫部门清运处置;釜渣产生量约为 0.9t/a、废矿物油、含油抹布产生量约为 0.5t/a、废水处理废包装产生量约为 0.1t/a、废离子交换树脂产生量约为 0.3t/a、气浮、初沉污泥产生量约为 95t/a、废活性炭(废气处理)产生量约为 11.14t/a、废活性炭(废水处理)产生量约为 9.9t/a、废有机溶剂(废气处理)产生量约为 127.128t/a、废膜组件产生量约为 0.15t/a、废有机溶剂(实验室)产生量约为 0.3t/a、活性炭脱附废催化剂产生量约为 1.15t/a、废包装桶产生量约为 7.328t/a,交由有危废处理资质单位回收处置(危废回收合同见附件 8);生化污泥产生量约为 16.5t/a、集尘器粉尘产生量约为 55.269t/a、沉降在车间内粉尘产生量约为 8.46t/a、废磁棒产生量约为 0.024t/a、废包装材料产生量约为 2t/a、废粉(不合格品)产生量约为 5t/a,交由相关回收单位回收处理。

综上,现有工程实际污染物排放情况详见下表。

表 2-21 现有工程污染物实际排放情况汇总表

		11工在17米份人的11米的公司					
	污染源	污染物名称	实际排放量(t/a)				
		动植物油	0.002				
		总磷	0.001				
	生活污水	悬浮物	0.316				
	2494.8t/a	化学需氧量	0.389				
		五日生化需氧量	0.157				
		氨氮	0.019				
废水		悬浮物	0.021				
		化学需氧量	0.082				
	4. 文 应 人	五日生化需氧量	0.012				
	生产废水 2930.84t/a	氨氮	0.0004				
		磷酸盐	0.0002				
		甲苯	0.000004				
		总有机碳	0.024				
	有机硅树脂生产/醇基	低浓度颗粒物	1.886				
废气	燃料生产废气、实验室	非甲烷总烃	0.094				
	废气和废水处理设施	VOCs	0.894				
		甲苯*	0.073				

恶臭 DA001	苯系物*	0.073
	甲醇	0.145
	臭气浓度	278
	氮氧化物	0.944
一期锅炉废气 DA002	二氧化硫	0.016
DA002	低浓度颗粒物	0.126
饭堂油烟 DA004	油烟	0.0005
环氧塑封材料硅油加	氮氧化物	/
热、挤出废气 DA005	二氧化硫	/
3,711,211	VOCs	0.304
 噪声	≤57.8dB	(A)
	员工生活垃圾	7
	釜渣	0.9
	废矿物油、含油抹布	0.5
	废水处理废包装	0.1
	废离子交换树脂	0.3
	气浮、初沉污泥	95
	废活性炭 (废气处理)	11.14
	废活性炭 (废水处理)	9.9
	废有机溶剂(废气处理)	127.128
固体废物	废膜组件	0.15
	废有机溶剂 (实验室)	0.3
	活性炭脱附废催化剂	1.15
	废包装桶	7.328
	生化污泥	16.5
	集尘器粉尘	55.269
	沉降在车间内粉尘	8.146
	废磁棒	0.024
	废包装材料	2
	废粉 (不合格品)	5

# 4、现有工程主要环境问题及整改措施

# 表 2-22 现有工程主要环境问题及整改措施一览表

序号	类型	环保手续要求	项目现状	相符 性	整改要求
1	废水	应按"清污分流、雨污分流"的原则优化设置厂区给、排水系统。该项目间接冷却水循环回用,不外排;无其他生产废水产生和排放。生活污水经预处理达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准和江海污水处理厂进水标准的较严者后,排入江海污水处理厂。	项目间接冷却水循环 回用,不外排;生活污水经三级化粪池处理 后能达到广东省《水污染物排放限值》(DB44/ 26-2001)第二时段三 级标准和江海污水处 理厂进水标准的较严 者	符合	无
2	废气	采取有效的废气收集和处理措施,减少大气污染物排放量,确保项目有组织和厂界无组织废气达标排放。项目外排工艺废气中,非甲烷总陉和颗粒物执行《合成树脂工业污染物排放标准》(GB31572-2015)的有关要求; VOCs 在相关排放标准发布执	项目废气经二级活性 炭处理后排放,可达到 《合成树脂工业污染 物排放标准》(GB3157 2-2015)和挥发性有机 化合物排放标准》(DB	符合	无

		行前参照执行广东省《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)的有关要求;厂区内无组织排放的有机废气还应执行《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1 厂区内 V OCs 无组织特别排放限值。食堂油烟排放执行《饮食业油烟排放标准(试行)》(GB 18483-2001)中小型规模标准。恶臭污染物执行国家《恶臭污染物排放标准》(GB 14554-93)二级新扩改建标准。排气筒高度不能达到高出周围 200m 半径范围内最高建筑 5m 以上要求的,排放速率应按对应限值的 50%执行。项目改扩建完成后,全厂VOCs 排放量<3.63 吨/年。	44/814-2010)的有关要求		
3	噪声	优化厂区的布局,采用低噪设备和采取有效的减振、隔音、消音等降噪措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准要求。	企业噪声排放符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准要求	符合	无
5	固废	按照分类收集和综合利用的原则,落实固体废物的处理处置,防止造成二次污染。其中列入《国家危险废物名录》属于危险废物的,必须严格按照国家和广东省危险废物管理的有关规定,送有资质的单位处理处置,并执行危险废物转移联单制度。厂区内的危险废物和一般工业固体废物临时性贮存设施应符合国家《危险废物贮存污染控制标准》(GB 18597-2001)和修改单、《一般工业固体废物贮存和填埋污染控制标准》XGB 18599-2020)的规定。生活垃圾送环卫部门统一处理。	企业按照《危险废物贮存污染控制标准》(GB18597-2023)、《一般工业固体废物贮存和填埋污染控制标准》 XGB18599-2020)的规定设置危废暂存间和一般固废暂存间,并签订危废回收合同(见附件8);生活垃圾送环卫部门统一处理	符合	无
6	风险	制订严格的规章制度,加强污染防治设施的管理和维护,减少污染物排放。完善厂内的环境风险应急措施,保证各类事故性排水得到收集和妥善处理,不排入外环境。应加强事故应急演练,防止环境污染事故,确保环境安全。	企业已落实风险预防 措施,强化环境风险管 理,加强事故应急演 练。	符合	无

项目建成运行过程均满足环评批复要求,原有项目均按环评批复要求落实各环保措施处理,无相关环保投诉。

# 三、区域环境质量现状、环境保护目标及评价标准

# 1、大气环境

根据《江门市人民政府办公室关于印发江门市环境空气质量功能区划调整方案(2024年修订)的通知》(江府办函(2024)25号)(见附图 7),项目所在区域属二类区,执行《环境空气质量标准》(GB3095-2012)及其修改单中的二级标准。本环评引用江门市生态环境局公布的《2023年度江门市环境状况公报》(网址: http://www.jiangmen.gov.cn/bmpd/jmssthjj/hjzl/ndhjzkgb/content/post_3067587.html)的数据作为评价,监测项目有  $PM_{10}$ 、 $SO_2$ 、 $NO_2$ 、CO、 $PM_{2.5}$ 、 $O_3$ ,监测结果见下表。

现状浓度 标准值 占标率 污染物 年评价指标 达标情况  $(\mu g/m^3)$  $(\mu g/m^3)$ (%) 年平均质量浓度 达标 PM_{2.5} 35 69 年平均质量浓度 48 70 达标  $PM_{10}$ 69 年平均质量浓度 7 60 12 达标  $SO_2$ 年平均质量浓度 达标  $NO_2$ 24 40 60 95%日平均质量浓度 达标 800 4000 CO 20 90%最大8小时平均质量浓度 不达标  $O_3$ 172 160 107.5

表 3-1 2023 年江海区大气环境质量监测结果

由上表数据可知,可知 2023 年度江海区基本污染物中 O₃ 日最大 8 小时平均浓度的第 90 百分位数超过《环境空气质量标准》(GB3095-2012)及其修改单二级浓度限值,因此本项目所在评价区域为不达标区。

为改善环境质量,江门市已印发《江门市生态环境保护"十四五"规划》(江府(2022)3号),①建立空气质量目标导向的精准防控体系。实施空气质量精细化管理。加强重点区域、重点时段、重点领域、重点行业治理,强化分区分时分类差异化精细化协同管控,到2025年全市臭氧浓度进入下降通道。深化大气污染联防联控。深化区域、部门大气污染联防联控,开展区域大气污染专项治理和联合执法,推动臭氧浓度逐步下降、城市空气质量优良天数比例进一步提升。优化污染天气应对机制,完善"市-县"污染天气应对预案体系,逐步扩大污染天气应急减排的实施范围,完善差异化管控机制。加强高污染燃料禁燃区管理。②加强油路车港联合防控。持续加强成品油质量和油品储运销监管。深化机动车尾气治理。加强非道路移动源污染防治。③深化工业源污染治理。大力推进VOCs源头控制和重点行业深度治理。深化工业炉窑和锅炉排放治理。④强化其他大气污染物管控。以臭氧防控为核心,持续推进大气污染防治攻坚,强化多污染物协同控制和区域、部门间联防联控,推动臭氧浓度进入下降通道,促进我市空气质量持续改善。

#### 2、地表水环境

项目位于江海污水处理厂纳污范围,污水厂尾水排入麻园河。根据《江门市江海区水功能区划》,麻园河 2025 年水质目标为《地表水环境质量标准》(GB3838-2002) IV类标准。

项目参考江门市宇隆汽机车配件有限公司委托广东乾达检测技术有限公司于 2023 年 11 月 28 日至 2023 年 11 月 30 日"W1: 江海污水处理厂排污口汇入麻园河断面上游 800m"、"W2: 江海污水处理厂排污口汇入麻园河断面上游 500m"、"W3: 江海污水处理厂排污口汇入麻园河断面上游 500m"、"W3: 江海污水处理厂排污口汇入麻园河断面下游(马鬃沙河)1000m",监测断面的监测数据,其监测结果见下表。

表 3-2 地表水质量达标情况表

	~~	3-2 XB4X/N/V	(里心小月儿从			
项目	采样日期	W1	W2	W3	标准值	
	2023.11.28	7.2	7.2	7.3		
pН	2023.11.29	7.3	7.3	7.2	6-9	
	2023.11.30	7.5	7.3	7.4		
	2023.11.28	3.4	5.0	4.8		
溶解氧	2023.11.29	3.1	4.7	4.2	≥3	
	2023.11.30	4.1	4.9	4.6		
	2023.11.28	14	20	13		
悬浮物	2023.11.29	15	18	12	/	
	2023.11.30	7	10	13		
	2023.11.28	28	18	20		
化学需氧量	2023.11.29	29	20	26	30	
	2023.11.30	26	19	23		
	2023.11.28	5.8	4.0	4.8	6	
$BOD_5$	2023.11.29	6.0	4.3	5.4		
	2023.11.30	55.8	4.0	4.8		
	2023.11.28	1.34	1.01	1.13		
氨氮	2023.11.29	1.21	0.967	1.13	1.5	
	2023.11.30	1.13	0.954	1.03		
	2023.11.28	0.28	0.18	0.22		
总磷	2023.11.29	0.25	0.16	0.20	0.3	
	2023.11.30	0.28	0.16	0.18		
	2023.11.28	0.11	0.06	0.07		
石油类	2023.11.29	0.15	0.08	0.11	0.5	
	2023.11.30	0.13	0.07	0.10		
阴离子表面活	2023.11.28	0.08	ND	ND		
性剂	2023.11.29	ND	ND	ND	0.3	
	2023.11.30	ND	ND	ND		

由上表可见,麻园河水质中所测指标均能达到《地表水环境质量标准》(GB3838-2002) IV类标准要求,表明项目所在区域地表水环境为达标区。

### 3、声环境

根据关于印发《江门市声环境功能区划》的通知(江环〔2019〕378 号)》,本项目属于 3 类声环境功能区,执行《声环境质量标准》(GB3096-2008)3 类标准。结合项目四至情况可知,项目厂界外 50 米范围内无声环境保护目标,故不需要开展声环境质量监测。根据《 2023 年 度 江 门 市 环 境 状 况 公 报 》 ( 网 址 : http://www.jiangmen.gov.cn/bmpd/jmssthjj/hjzl/ndhjzkgb/content/post_3067587.html),江门市区昼间区域环境噪声等效声级平均值 59.0 分贝,优于国家声环境功能区 2 类区(居住、商业、工业混杂)昼间标准;道路交通干线两侧昼间噪声质量处于较好水平,等效声级为 68.6 分贝,符合国家声环境功能区 4 类区昼间标准(城市交通干线两侧区域)。

#### 4、生态环境

根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》的规定: "生态环境。产业园区外建设项目新增用地且用地范围内含有生态环境保护目标时,应进行生态现状调查。"

本项目选址用地范围不涉及《建设项目环境影响评价分类管理名录(2021 年版)》规 定的生态类环境敏感区,也没有涉及生态保护红线确定的其它生态环境敏感区,因此,本项 目环境影响报告不需要进行生态环境质量现状调查。

#### 5、电磁辐射

根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》的规定: "新建或改建、扩建广播电台、差转台、电视塔台、卫星地球上行站、雷达等电磁辐射类项目,应根据相关技术导则对项目电磁辐射现状开展监测与评价。"

本项目不属于电磁辐射类项目,因此,本项目环境影响报告不需要进行电磁辐射质量现 状调查。

#### 6、地下水、土壤环境

根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》的规定: "原则上不开展环境质量现状调查。建设项目存在土壤、地下水环境污染途径的,应结合污染源、保护目标分布情况开展现状调查以留作背景值。"

本项目租赁厂房的地面已硬化,且建设时不涉及地下工程,正常运营情况下也不存在明显的土壤、地下水环境污染途径,因此,本项目环境影响报告不需要进行地下水、土壤环境质量现状调查。

#### 1、大气环境

项目厂界外 500 米范围内的自然保护区、风景名胜区、居住区、文化区和农村地区中人群较集中的区域等保护目标的名称及与建设项目厂界位置关系详见下表。

保护 保护内容 坐标/m 相对厂址 相对厂界 名称 环境功能区 (人) 距离/m X 对象 方位 江海万达公寓 小区 4400 西北 180 -175 5 小区 东北 高新小区 333 175 1200 378 GB3095-20 12 二类区 新城雅苑 308 245 小区 1000 东北 395 1400 宏都新城 251 329 小区 东北 412

表 3-3 项目周边环境保护目标

注: 坐标为以项目生产车间中心为原点(0, 0),东西向为 X 坐标轴,南北向为 Y 坐标轴,环境保护目标的坐标取距离项目厂址中心点的最近点位置。

#### 2、声环境

项目厂界外 50 米范围内无自然保护区、风景名胜区、居住区、文化区和农村地区中人群较集中的区域。

#### 3、地下水环境

环境保护目标

项目厂界外 500 米范围内不存在地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

#### 4、生态环境

项目用地范围内不存在生态环境保护目标。

#### 1、废水

**生活污水:**项目生活污水经三级化粪池预处理达到广东省《水污染物排放限值》 (DB44/26-2001)二时段三级标准和江海区污水处理厂进水标准较严者后通过市政管网排入 江海区污水处理厂处理,尾水排入麻园河。

表 3-4 生活污水排放标准

项目	排放标准			标准	值mg/L		
坝日	11F / X 作小作	рН	$COD_{Cr}$	BOB ₅	SS	NH ₃ -N	动植物油
生活	(DB44/26—2001) 第二时段三级标准	6~9	≤500	≤300	≤400	/	≤100
污水 DW00	江海污水处理厂进 水标准	6~9	≤220	≤100	≤150	≤24	/
1	较严值	6~9	≤220	≤100	≤150	≤24	≤100

**生产废水**:本项目生产废水依托现有生产废水治理设施进行处理,扩建后全厂生产废水经自建废水处理站处理后部分回用于生产工艺用水,部分排入市政污水管网;水质标准执行《城市污水再生利用 工业用水水质》(GB/T19923-2005)中工艺与产品用水的水质标准、广东省地方标准《水污染物排放限值》(DB4426-2001)第二时段一级标准、《合成树脂工业污染物排放标准》(GB31572-2015)表1水污染物排放限值(直接排放)、江海污水处理厂进水水质标准的较严者。

表 3-5 生产废水排放标准

标准	рН	色度	悬浮物	化学需 氧量	五日生化 学需氧量	氨氮	总磷/磷 酸盐*	甲苯	总有 机碳	总硬度 **
GB/T19923-2005	6.5~8.5	30	/	60	10	10	1	/	/	450
DB4426-2001	6-9	40	60	90	20	10	0.5	0.1	20	/
GB31572-2015#	6-9	/	30	60	20	8	1.0	0.1	20	/
江海污水处理厂进 水标准##	6-9	/	150	220	100	24	10	/	/	/
执行标准	6.5~8.5	30	30	60	10	8	0.5	0.1	20	450

注:*以P计;**以CaCO3计;#有机硅树脂基准排水量2.5kg/kg产品;##出于《江门市江海污水处理厂升级改造工程项目建议书》。

# 2、废气

**研发实验有机废气:** 非甲烷总烃、TVOC、苯系物(甲苯)执行广东省地方标准《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 1 挥发性有机物排放限值;

**厨房油烟:** 执行《饮食业油烟排放标准》(GB18483-2001)最高允许排放浓度,项目设灶头数为4个,参照饮食业单位规模划分为中型,净化设施最低去除效率75%;

厂内非甲烷总烃无组织排放执行《固定污染源挥发性有机物综合排放标准》(DB44/2367

#### 一2022) 表3厂区内VOCs无组织排放限值。

# 表 3-6 废气排放控制标准

排放口编号/排放类型	类别	污染物	有组织排 放限值	排气 筒高 度	最高排放速率	无组织排放监控浓度 限值
DA007	研发实验	非甲烷 总烃	80mg/m ³	15m	/	/
DAUUT	有机废气	TVOC	$100 \text{mg/m}^3$	1 3111	/	/
		苯系物	40mg/m ³		/	/
DA004	油烟废气	油烟	2.0mg/m ³	/	/	/
厂区内	有机废气	NMHC	/	/	/	6 (监控点处 1h 平均 浓度); 20 (监控点 处任意一次浓度值)

# 3、噪声

项目营运期噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,标准值详见下表。

表 3-7 噪声排放控制标准

标准名称	标	准值
	昼间 dB(A)	夜间 dB(A)
(GB 12348-2008) 3 类标准	65	55

# 4、固体废物

固体废物管理应遵照《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》的要求;参照《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020),采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求;危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)中的有关规定。

# 1、水污染物排放总量控制指标

本项目外排废水纳入江海污水处理厂处理,不作为申请总量控制指标。

# 2、大气污染物排放总量控制指标

本项目扩建前后总量控制指标分析见下表。

表 3-8 项目扩建前后总量控制指标一览表(单位: t/a)

类别	  总量控制指标	现有工程许	本项目排	"以新带	总体工程	增减
<b></b>	心里狂刺泪协	可排放量	放排量	老"削减量	排放量	量
大气污染物	挥发性有机物	3.63	0.199	0	3.829	+0.199

#### 3、固体废物总量控制指标

本项目固体废物不自行处理排放,所以不设置固体废物总量控制指标。

项目最终执行的污染物排放总量控制指标由当地生态环境行政主管部门分配与核定。

# 四、主要环境影响和保护措施

施工期环境 保护措施	本項	页目已刻	建设完成,	无需再考虑	忌施工	期环保持	昔施。									
	1、废气	1、废气 表 4-1 废气污染源源强核算结果及相关参数一览表														
						<u> </u>		4-1 <b>及气力来源源强权异结米</b> 及 污染物产生			<b>一见衣</b> 施			物排放		排
	工序 /生 产线	装置	污染源	污染物	污染物		产生量 /t/a	立井	产生 速率 /kg/h	工艺	去除 率/%	核算方式	排放量 /t/a	排放 浓 /mg/m ²	排放速 率/kg/h	放 时 间/h
			排气筒	挥发性有机	孔物		0.312	11.818	0.118	二级活性	90		0.031	1.174	0.012	
	研发	实 验	DA007	甲苯	产污	0.0002	2 0.008	0.000	炭吸附	90	- 产污 -	0.00002	0.001	0.00001	264	
	实验	室	无组织	挥发性有构	机物 产污		0.168	/	0.064	/	0	厂/5     系数	0.168	/	0.064	0
   运营期环			排放	甲苯		法	0.0000	1 /	0.000	/	0	法	0.00001	/	0.00000 4	
境影响和 保护措施	烹饪	灶 台	排气筒 DA004	油烟			0.101	12.242	0.061	油烟净化 装置	90		0.010	1.242	0.006	165 0
N(1) 10 NE		·					表 4			E常排放核算表	麦				•	
	非正常	常排放测	東 非正	常排放原 因		7年 7577//		非正常排放浓 度/(mg/m³)		正常排放速 率/(kg/h)	单次扫	寺续时间	年发生频次		应对措施	
	D/	<b>4</b> 007	<b> </b>	处理系统		油烟		132.5		0.133		1h	2 7	<del>ر</del> 1	停止生产,核	途修环
	$  $ $\mathbf{D}_{\ell}$	<b>4</b> 004		故障	挥发	<b>文性有机</b>	物	11.818		0.118		1h			保设施,直至环保	
			. //\. // . 1/. P <del>\</del>		17 124	甲苯	L) L frfg	0.008		0.0001		1h	2 7	7	设施正常运	<u></u>
		②废气	处理系统	持续时间最 保持正常运 能力按 0%算	作,1			; 存在维护	不及时与	导致其故障情况	兄,则每	手年最多	2次。			
								表 4-3 废	₹排放口	基本情况表						
			编号	分名称			高	度 (m)	排气筒口	内径(m) 温	<b>基</b> 2 温度/℃	<b>卜情况</b> 类型	Ā	地	理坐标	

研发实验有机废气排放口 DA007	15	0.48	25	点源	113°7′35.075″,22°33′29.432″
油烟废气排放口 DA004	15	0.2	35	点源	113°7′35.071″,22°33′29.432″

注: 本项目研发实验有机废气排放口 DA007 内径为 0.48m, 风量为 10000m³/h, 可得出口风速为 15.36m/s。

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)、《排污单位自行监测技术指南总则》(HJ819-2017)、《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ1103—2020)和《排污许可证申请与核发技术规范总则》(HJ942—2018),企业自行监测计划见下表。具体见下表。

表 4-4	废气监测要求表
<b>1</b> 2 T T	

污染源	排放形	排放口编号及名称		监测要求		执行标准				
行朱/尔	式	11部以口编与汉石协	监测点位	监测因子	监测频次	15/11 47/4 日				
研发实验 有机废气	有组织	DA007	处理前、处理 后	甲苯、非甲 烷总烃、 TVOC	半年1次	广东省地方标准《固定污染源挥发性有机物综合排 放标准》(DB44/2367—2022)表 1 挥发性有机物 排放限值				
油烟废气	有组织	DA004	处理前、处理 后	油烟	半年1次	《饮食业油烟排放标准》(GB18483-2001)最高允许排放浓度				
研发实验 有机废气	无组织	/	厂界上风向1 个点,下风向 扇形设3个点	甲苯、非甲 烷总烃、 TVOC	半年1次	《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 3 厂区内 VOCs 无组织排放限值				
有机废气	无组织	在厂房门窗或通风口、其他开口(孔)等排放口外1m	在厂房外设 置监控点	NMHC	半年1次	《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 3 厂区内 VOCs 无组织排放限值				

### (1) 源强核算

### ①研发实验有机废气(甲苯、非甲烷总烃、TVOC):

**物理检验废气:** 对产品进行固化过程会产生有机废气,每年检验产品量为 0.007 吨,按最不利因素 100%挥发,则物理检验过程有机废气产 生量为 0.007t/a。

化学检验废气: 化学检验过程需要使用甲醇、乙酸进行配置试剂溶液,该过程会产生有机废气,本次采用 B.T.M 马拉克公式估算有机试剂

根据《大气污染物治理工程技术导则》(HJ2000-2010),排气筒的出口直径应根据出口流速确定,流速宜取 15m/s 左右。因此,本项目 排气筒规格的设置均符合要求。

的挥发量,马拉克公式如下:

$$G = (5.38 + 4.1u) \cdot P \cdot F \cdot M^{1/2} / 133.32$$

式中: G一挥发速率, g/h

u一风速, m/s

P-室温的饱和蒸气压力 Pa

F--敞露面积,m²

M一分子量各物质分子量及饱和蒸气压取值查阅相关资料得,风速按 0.5m/s。

本项目实验过程有机溶剂在烧杯或锥形瓶内进行,瓶口敞露面积按 0.002m²。本项目年工作 330 天,有机溶剂使用时间约每天 4h。项目有机废气挥发量计算如下:

原辅料名称 分子量M 工作时间h 废气产生量t/a 饱和蒸气压Pa 废气挥发速率g/h 12300 甲醇 32 7.815 1320 0.01 60 1520 1.322 1320 乙酸 0.002 合计 0.012

表4-5 有机废气挥发量一览表

研发废气:本项目研发实验室主要对有机硅胶树脂进行研发,围绕建设单位目前的生产流程进行研发改进。参考原有项目验收监测,产品产量为 2700 吨的生产过程有机废气总产生平均浓度为 162.353mg/m³,甲苯产生平均浓度为 6.67mg/m³,标干风量为 8426.5m³/h,年工作时间为 7920h,则原有项目有机废气产生量为 10.835t/a、甲苯产生量为 0.445t/a。本扩建实验室有机硅树脂研发产品总量约为 1.5t/a,参考已建成有机硅树脂生产线产污情况,本次有机硅树脂研发有机废气产生量为 0.006t/a、甲苯产生量为 0.006t/a。

70%酒精用于实验室消毒清洗玻璃器皿, 其挥发率取 100%, 年使用量为 0.65t/a, 则有机废气产生量为 0.65×70%=0.455t/a。

则研发实验有机废气总产生量为 0.007+0.012+0.006+0.455=0.48t/a, 甲苯产生量为 0.0003t/a。

研发实验有机废气经通风橱收集后引至一套"二级活性炭吸附"处理,处理后经管道引至 15m 排气筒 DA007 排放。

项目共设通风柜6个。参考《废气处理工程技术手册》(化学工业出版社),风量计算公式见下表:

### 表 4-6 集气罩排风量计算公式

集气罩形式	排放风量计算公式	罩形
半密闭罩(通风 柜)	Q=Fv 其中: Q: 集气罩的排风量, m³/s; F: 罩口面积, m²; F=πd²/4; 本环评d按0.5m算, 即F为0.2m²; v: 产污处的控制风速, m/s。本环评取0.75m/s。	上中下三个 缝隙面积相等 且v=5~7m/s

项目通风柜一般用于冷态,通风柜尺寸为  $1.5\text{m}\times0.8\text{m}\times2.35\text{m}$ ,打开面积 F 取  $1.5\text{m}\times0.8\text{m}\div2=6\text{m}^2$ ,v 取 0.5m/s,则通风橱排风量计算如下:  $O=3600\times0.6\times0.75\times6=9072\text{m}^3/\text{h}$ ,考虑到实际生产过程中会有风量损耗的情况,本环评取  $10000\text{m}^3/\text{h}$ 。

根据广东省生态环境厅《关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函[2023]538 号)中《广东省工业源挥发性有机物减排量核算方法(2023 年修订版)》表 3.3-2,研发实验有机废气收集类型按"半密闭型集气设备(含排气柜)",废气收集方式为污染物产生点(或生产设施)四周及上下有围挡设施,符合以下两种情况: 1、仅保留 1 个操作工位面; 2、仅保留物料进出通道,通道敞开面小于1 个操作工位面,收集效率为,属于"敞开面控制风速不小于 0.3m/s"的情况,研发实验有机废气集气效率为 65%。

根据《广东省家具制造行业挥发性有机废气治理技术指南》,本项目在按照规范设计活性炭吸附装置前提下,环评认为采用一级活性炭吸附装置可确保本项目有机废气污染物去除效率高于平均水平,即是高于 70%,在采用二级活性炭吸附装置情况下,活性炭吸附效率为 70%+ (100%-70%) ×70%>90%, 有组织废气总处理效率按照 90%计算;

则本项目研发实验有机废气挥发性有机物排放量为 0.199t/a,其中有组织排放量为  $0.48\times65\%\times(1-90\%)=0.031t/a$ ,无组织排放量为  $0.48\times(1-65\%)=0.168t/a$ ; 甲苯排放量为 0.00003t/a,其中有组织排放量为  $0.0003\times65\%\times(1-90\%)=0.00002t/a$ ,无组织排放量为  $0.00003\times(1-65\%)=0.00001t/a$ 。

# ②油烟废气

该项目厂区设有员工食堂,本次扩建项目新增每天就餐人数为 10 人。项目食堂在烹饪、加工食物过程中将挥发出油脂、有机质及热分解或裂解产物,从而产生油烟废气。厨房灶台燃料使用液化石油气,属于清洁能源,其燃烧效率高,燃烧产生的废气中污染物含量较低,可以忽略不计。根据相关资料和调查统计,一般食用油耗量为 0.07kg/人.天,每天在烹饪过程中油烟的挥发量约为食用油耗量的 2%,炒作时间为 5h/d,

工作天数为 330d/a,本次扩建项目食堂食用油油耗量约为 0.07kg/人.天×10 人×330d/a=0.23t/a,厨房油烟新增产生量 0.23t/a×2%=0.004t/a,厨房油烟产生量 0.004t/a×2%=0.0001t/a。整体项目食用油油耗量约为 0.07kg/人.天×210 人×330d/a+0.07kg/人.天×10 人×330d/a=5.061t/a,厨房油烟产生量 5.061t/a×2%=0.101t/a。项目依托现有油烟净化装置,风量按 5000m³/h 计算,油烟产生浓度为 12.242mg/m³,油烟净化装置处理效率按 90%算,经处理后由专用烟管道引至屋项排放,处理后油烟废气的排放浓度约为 1.242mg/m³,排放量为 0.010t/a。

### (2) 废气污染防治措施可行性分析

活性炭吸附属于《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ 1103—2020)排污单位废气污染防治推荐可行技术。

### (3) 大气环境影响分析结论:

本项目研发实验有机废气经通风柜收集后引至一套"二级活性炭吸附"处理,处理后经管道引至 15m 排气筒 DA007 排放。研发实验有机废气非甲烷总烃、甲苯、TVOC 可达到《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 1 挥发性有机物排放限值和表 3 厂区内 VOCs 无组织排放限值(待国家污染物监测方法标准发布后实施 TVOC 限值,TVOC 限值未实施前执行 NMHC 的排放限值)。厂内非甲烷总烃 无组织排放可达到《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 3 厂区内 VOCs 无组织排放限值。

项目废气经上述措施处理后,对周边的大气环境影响较小。

# 2、废水

表 4-7 废水污染源源强核算结果及相关参数一览表

				海北县		污染	<b>杂物产生</b>		治理	设施		污染物	<b>勿排放</b>
	工序	装置	污染源	汚水量   /t/a	污染物	产生浓	产生量	处理能	处理工	治理效	是否可	排放浓	排放量
	员工生 活			/v/a		度/mg/L	/t/a	力/t/d	艺	率/%	行	度/mg/L	/t/a
					$COD_{Cr}$	250	0.034			64		220	0.030
	<b>旦</b> 工		生活污		BOD ₅	150	0.020		厌氧发	87		100	0.014
		办公室		135	SS	150	0.020	20		60	是	100	0.014
	酒		水		氨氮	20	0.003		酵	50		10	0.001
					动植物油	20	0.003			50		10	0.001
					$\mathrm{COD}_{\mathrm{Cr}}$	127	0.0069		沉淀+厌	52.76		60	0.003
	研发试	实验室	实验室	5.4	BOD ₅	53.5	0.0029	60		81.31	是	10	0.001
	验	<b>头</b> 娅至	废水	54	SS	30	0.0016	00	氧+好氧	0.00	疋	30	0.002
					氨氮	3.66	0.0002		+反渗透	72.68		1	0.0001

制备纯		纯水制	26	盐度	/	/	/	/	/	/	/	/
水	纯水机	备浓水	20	$COD_{Cr}$	10.5	0.0003	/	/	/	/	10.5	0.0003

根据《环境影响评价技术导则-地表水环境》(HJ 2.3--2018)、《排污单位自行监测技术指南总则》(HJ 819-2017)、《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ 1103—2020)和《排污许可证申请与核发技术规范总则》(HJ942—2018),企业自行监测计划见下表。具体见下表。

表 4-8 废水排放口基本情况及监测要求表

编号及名称	排放方式	排放去向	排放规律	类型	地理坐标	监测点位	监测因子	监测频次
生活污水排 放口 DW001	间接排放	江海污水 处理厂	间断排放,排放期间流量不稳定且无规律,但 不属于冲击型排放。	企业 总排	113°7′35.079″, 22°33′29.431″	处理前、 处理后	CODer、BOD ₅ 、SS、氨 氮、动植物油	半年一次
生产废水排 放口 DW002	间接排放	江海污水 处理厂	间断排放,排放期间流量不稳定且无规律,但不属于冲击型排放。	企业 总排	113°7′35.075″, 22°33′29.430″	处理前、 处理后	CODcr、BOD ₅ 、SS、氨 氮、色度、总磷/磷酸盐、 甲苯、总有机碳、总硬度	半年一次

注:员工生活污水执行广东省《水污染物排放限值》(DB44/26-2001)二时段三级标准和江海区污水处理厂进水标准较严者;生产废水执行《城市污水再生利用 工业用水水质》(GB/T19923-2005)中工艺与产品用水的水质标准、广东省地方标准《水污染物排放限值》(DB4426-2001)第二时段一级标准、《合成树脂工业污染物排放标准》(GB31572-2015)表1水污染物排放限值(直接排放)、江海污水处理厂进水水质标准的较严者。

# (1) 源强核算

**生活污水:**本扩建项目新增劳动定员 10 人,均在厂区内就餐,实验室年工作天数为 330 天。参考广东省《用水定额 第 3 部分:生活》(DB44/T 1461.3-2021)中"国家行政机构-办公楼-有食堂和浴室的先进值",本项目员工的生活用水量按照 15m³/人·年,则本项目生活用水量约为 10×15=150t/a。污水系数按用水的 90%算,则项目员工生活污水外排量为 135t/a。

此类污水的主要污染物为 COD_{Cr}、BOD₅、SS、氨氮、动植物油。参照《环境影响评价技术基础》(环境科学系编)中统计多年实际监测经验结果中的南方地区办公污水主要污染物的产生浓度 COD_{Cr}: 250mg/L, BOD₅: 150mg/L, SS: 150mg/L, 氨氮: 20mg/L, 动植物油: 20mg/L。

生活污水依托现有三级化粪池、隔油隔渣池预处理,达到广东省《水污染物排放限值》(DB44/26-2001)二时段三级标准和江海区污水处理厂进水标准较严者后通过市政管网排入江海区污水处理厂处理,尾水排入麻园河。

### 生产废水:

冷却用水:本扩建项目新增 1 个冷却塔,用于空调机组的冷却,冷却塔工作使用自来水,过程无需添加矿物油、乳化液等冷却剂,冷却方式为间接冷却。本项目冷却水塔循环水量为 10m³/h,冷却用水循环使用,无需更换,由于蒸发损耗,需要定期补充水量。根据《工业循环冷却水处理设计规范》(GB50050-2017)5.0.6 开式系统的补充水量可按下列公式计算:

 $Qc=k\cdot\triangle t\cdot Qr$ 

式中: Qc 为蒸发水量 (m³/h);

k 为蒸发损失系数, 根据表 5.0.6, 取 0.0014;

 $\triangle$ t 为循环冷却水进、出冷却塔温差 ( $\bigcirc$ ), 本环评取 10 $\bigcirc$ ;

Qr 为循环冷却水量(m³/h)。项目年工作时间为 2400h。

则本项目水塔需要补充蒸发水量为 0.0014×10℃×10m³/h×2400h=336m³。

**实验室废水**:实验室每天约使用 50 个实验器皿,每个使用水量为 50~250ml 不等,参照万木公司实际运行经验,项目实验后器皿第一遍清洗用水量为 1t/a,污水系数按用水 90%算,则项目实验室清洗废液产生量为 0.9t/a,属于危险废物,交由有危废回收资质的单位处理(该部分废液不计入废水中);其余清洗用水(含实验前润洗、实验后第二、三遍清洗废水等)用水量约 60t/a,污水系数按用水的 90%算,则项目实验室废水产生量约为 54t/a。

本项目实验室废水水质参考《瑞奇新材料(广州)有限公司新材料研发实验室建设项目竣工环境保护设施验收报告》实验器材低浓度润洗废水最大值水质最大值: CODc: 127mg/L、BODs: 53.5mg/L、SS: 30mg/L、氨氮: 3.66mg/L。

**纯水制备浓水:** 实验室需要使用纯水量约为 60t/a,纯水机制水率约为 70%,所需自来水量为 86t/a,浓水产生量为 26t/a,纯水制备装置排放的浓水中主要是盐离子及二氧化硅含量偏高,相当于自来水中离子浓度浓缩了 3~4 倍,故结垢型盐类离子浓度大于自来水,碱度相对较大,主要污染物为溶解性总固体(全盐量),参考《超滤膜组合工艺处理砂滤池反冲洗水试验研究》(李平波等,2013 年),对净水厂砂滤池反冲洗水水质进行分析,CODcr 浓度为 3.05~10.5mg/L,本环评取最大值 10.5mg/L。纯水制备浓水经现有生产废水治理设施处理后排放至江海区污水处理厂处理,尾水排入麻园河。

本项目生产废水引至现有自建污水处理设施处理,生产废水经自建污水处理设施处理达到《城市污水再生利用 工业用水水质》 (GB/T19923-2005)中工艺与产品用水的水质标准、广东省地方标准《水污染物排放限值》(DB4426-2001)第二时段一级标准与《合成树脂 工业污染物排放标准》(GB31572-2015)表 1 水污染物排放限值(直接排放)、江海污水处理厂进水水质标准的较严者后通过市政管网排入江海区污水处理厂处理,尾水排入麻园河。

### (2) 项目废水排放口设置可行性分析

本项目生产废水、生活污水依托现有工程废水排放口排放。根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)表 1 注 9,本项目属间接排放。企业已根据《中华人民共和国水污染防治法》等相关规定申报废水排放口,合法排放项目废水,并依据国家标准《环境保护图形标志--排放口(源)》和国家环保局《排污口规范化整治要求(试行)》的技术要求,按照"便于采样、便于计算监测、便于日常现场监督检查"的原则和规范化要求,设置与之相适应的环境保护图形标志牌,绘制企业排污口分布图。故企业废水排放口设置基本可行。

### (3) 生活污水处理设施可行性分析

本项目依托现有生活污水治理设施处理,处理能力为 20t/d, 扩建后全厂生活污水排放量为 5619.6+135=5754.6t/a(17.44t/d),能满足污水处理要求。

三级化粪池工作可行性分析:三级化粪池是由一级池中部通过管道上弯转入下一级池中进行二次净化,再由二次净化后的粪水再导入下一级再次净化,这样经过三次净化后就已全部化尽为水,方可流入一体化污水处理设施。新鲜粪便由进粪口进入第一池,池内粪便开始发酵分解、因比重不同粪液可自然分为三层,上层为糊状粪皮,下层为块状或颗状粪渣,中层为比较澄清的粪液。在上层粪皮和下层粪渣中含细菌和寄生虫卵最多,中层含虫卵最少,初步发酵的中层粪液经过粪管溢流至第二池,而将大部分未经充分发酵的粪皮和粪渣阻留在第一池内继续发酵。流入第二池的粪液进一步发酵分解,虫卵继续下沉,病原体逐渐死亡,粪液得到进一步无害化,产生的粪皮和粪渣厚度比第一池显著减少。流入第三池的粪液一般已经腐熟,其中病菌和寄生虫卵已基本杀灭。第三池功能主要起储存已基本无害化的粪液作用。

综上,项目生活污水处理工艺属于《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ 1103—2020)表 C.2 废水污染防治可行技术。

# (4) 生产废水处理设施可行性分析

本项目依托现有生产废水治理设施处理,项目自建废水处理站处理量为 60t/d, 扩建后全厂生产废水产生量为 12829.38t/a(38.877t/d),本项目生产废水依托现有废水治理设施是可行的。具体处理工艺为: 对生产过程中产生的高浓度废水进行微电解+絮凝沉淀的预处理,以去除污水中表面活性剂及破坏大量难降解有机污染物质,经预处理的高浓度有机废水调整了污水的可生化性比值,然后经 IC 厌氧塔,A/O 生物处理工艺

处理;经生化处理废水进入 MBR 膜反应池、两级反渗透深度处理,部分中水回用至生产;反冲洗水经芬顿氧化处理、絮凝沉淀后排放。具体工艺流程见下图。

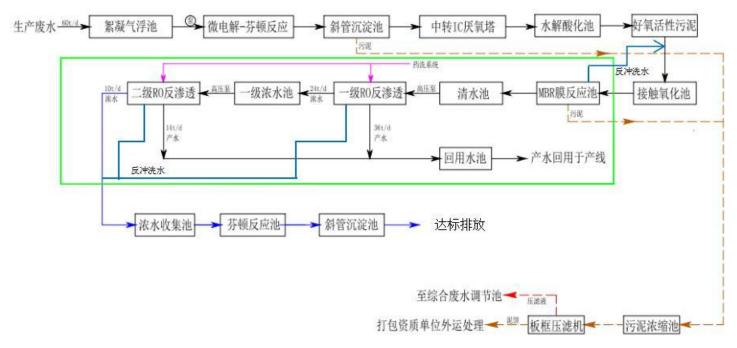



图 4-1 生产废水处理设施处理处理工艺流程图

# 生产废水处理工艺流程简述:

- 1、车间排放的高浓度生产废水通过管道的输送进入生产废水调节池:调节池设置2台废水提升泵及液位浮球,废水提升泵由液位浮球控制启停。
  - 2、废水由废水调节池提升至溶气气浮池:生产废水混合甲苯等不溶于水的有机废液,经溶气气浮将油水分离,去除水中油状物。
- 3、废水从 pH 调节池提升至微电解反应区: 当调节池内废水达到设定水位时,提升泵启动,将废水泵入 PH 调整池,控制进水量在 2m³/h,在调整池内计量加入硫酸至 PH: 2-3(由 pH 仪控制),后自流进入微电解反应池,反应池内设置铁碳填料层,利用铁碳间产生的无数原电池组,

将废水进行断键改性,增强废水的可生化性。

- 4、废水泵入芬顿氧化池: 芬顿氧化是以亚铁离子(Fe²⁺)为催化剂用过氧化氢(H₂O₂)生成强氧化性的羟基自由基,在水溶液中与难降解有机物生成有机自由基使之结构破坏,最终氧化分解。调整 pH 在 4~5,根据水质 COD 情况投加硫酸亚铁、双氧水的用量。废水经芬顿氧化后自流进入回调絮凝池,分别计量加入碱及絮凝剂 PAM,反应池完全后自流进入斜管沉淀池进行固液分离;上清液自流进入原水池,污泥定期排入污泥浓缩池。
- 5、废水泵入 IC 厌氧塔:反应池内设置液位浮球,当原水池水位达到设定水位高度时,由提升泵将原水泵入 IC 厌氧塔,利用 IC 厌氧塔的高 COD 容积负荷,能对有机物进行有效的去除降解将废水进行有效的降解(COD 去除率可达 80-90%),同时在厌氧塔内设置内循环系统,大大增加了反应器的抗高负荷冲击的能力。
- 5、IC 厌氧塔出水自流至水解酸化池:将不易降解大分子有机物分解成易降解的小分子有机物,提高废水可生化性。厌氧酸化的作用过程机理是:厌氧微生物→吸附氨基酸、糖类和脂肪酸等低分子有机物→低分子有机物酸化→小分子醋酸、丙酸和丁酸等有机物。
- 6、水解酸化池出水自流进入活性污泥反应池至中间沉淀池:利用好氧活性污泥中大量的微生物絮体吸附、吸收、包裹并降解污水中的低分子有机污染物质,污水中的有机污染物得到部分去除;活性污泥反应池出水进入中间沉淀池对活性污泥进行沉降截留,减少污泥的流失。
- 7、废水经中间沉淀池进入接触氧化池:通过好氧微生物的吸附、吸收和降解消化等作用,将污水中有机物大部分分解;在实际运用中,处理工艺将活性污泥法及接触氧化法有机地组合,充分地利用活性污泥微生物的吸附、吸收和降解,同时池内设置填料形成接触氧化的环境,以利生长缓慢的生物附着生长,提高系统的抗冲击能力。池内设置微孔曝气系统并罗茨风机强制供氧,设置填料层形成接触氧化的环境,以利生长缓慢的生物附着生长,提高系统的处理能力,并彻底降解水中可生物降解的有机物。
- 8、接触氧化池出水自流进入 MBR 膜池:接触氧化池出水中含有一些活性污泥及大分子颗粒物,利用 MBR 膜的通透性将这些颗粒物有效截留,系统采用 MBR 膜的过滤精度可达 0.2um,MBR 出水由泵抽吸至清水池,同时清水池提供 MBR 膜的反冲洗用水,反冲水入接触氧化池再处理。
- 9、一级 RO 反渗透:废水由高压泵从清水池抽送至一级 RO 反渗透系统处理,通过膜为分离介质,去除溶解性盐及有机物。一级 RO 反渗透产水率为 60%,一级 RO 反渗透产水至回用水池供生产回用,浓水至一级 RO 浓水池。RO 反渗透的反冲洗水(柠檬酸清洗)入浓水池。
  - 10、二级 RO 反渗透: 废水由高压泵从一级 RO 浓水池抽送至二级 RO 反渗透系统处理。二级 RO 反渗透产水率为 55%, 二级 RO 反渗透产

水至回用水池供生产回用,浓水至浓水收集池。RO 反渗透的反冲洗水(柠檬酸清洗)入浓水池。

- 11、反渗透浓水: 反渗透浓水收集池收集后的浓水经化学芬顿催化氧化反应处理。
- 12、芬顿氧化池出水经絮凝沉淀后进入终沉池:在清液加入 PAC 等絮凝药剂及聚丙烯酰胺并经曝气搅拌,进行絮凝和凝聚作用,反应后进入斜板澄清区,进行固液分离,上次清水达标排放,沉泥及其它多余污泥则排入污泥浓缩池,经浓缩后由浓浆泵泵入压滤机压干固化后外运资质公司处理。
  - 13、排放水池:最后出水达标排放。

综上,项目生产废水处理工艺属于《排污许可证申请与核发技术规范 专用化学产品制造工业》(HJ 1103—2020)表 C.2 废水污染防治可行技术。

#### (5) 江海污水处理厂纳污可行性分析

项目位于江海污水处理厂纳污范围,江海污水处理厂首期设计规模8×10⁴m³/d,其中第一阶段5×10⁴m³/d,采用顶处理+氧化沟+二沉池+紫外消毒工艺,于2010年9月投入正式运行;第二阶段3×10⁴m³/d,采用预处理+MBR-紫外消毒工艺,于2013年9月正式投入运行,江海污水处理厂尾水排入麻园河。

本次扩建项目生活污水和生产废水排放量为135+54+26=215t/a(0.65t/a),占江海污水处理厂处理规模的0.0008%,占比较少,项目只要加强管理,确保各项污水处理设施正常运行,则外排废水能够实现达标排放,不会对纳污水体的水环境质量造成明显不良的影响。

### (6) 地表水环境影响分析结论

本项目生活污水依托现有三级化粪池、隔油隔渣池预处理,达到广东省《水污染物排放限值》(DB44/26-2001)二时段三级标准和江海区 污水处理厂进水标准较严者后通过市政管网排入江海区污水处理厂处理,尾水排入麻园河;

生产废水经自建污水处理设施处理达到《城市污水再生利用 工业用水水质》(GB/T19923-2005)中工艺与产品用水的水质标准、广东省地方标准《水污染物排放限值》(DB4426-2001)第二时段一级标准与《合成树脂工业污染物排放标准》(GB31572-2015)表 1 水污染物排放限值(直接排放)、江海污水处理厂进水水质标准的较严者后通过市政管网排入江海区污水处理厂处理,尾水排入麻园河。

综上,本项目废水排放对所在区域地表水环境及周边环境造成的影响较小。

# 3、噪声

本项目项目的噪声主要来源于各生产设备运行时产生的机械噪声,主要为室内声源。生产设备噪声源强在 60~85dB(A)之间,详见下表。

# 表 4-9 噪声污染源源强核算结果及相关参数一览表 单位: dB(A)

序	装置	声源类型	噪声源强		降噪措施		噪声排放值		持续时
号	<b></b>	产你矢至	核算方法	噪声值	工艺	降噪效果	核算方法	噪声值	间/h
1	集热式恒温加热磁力搅拌器	频发		75~80		25		50~55	
2	智能数显恒温水油浴锅	频发		70~75		25		45~50	
3	电子天平	频发		60~65		25		35~40	
4	数显电动搅拌器	频发		75~80		25		50~55	
5	冰箱	频发		65~70		25		40~45	
6	冷凝管	频发		60~65		25		35~40	
7	分水器	频发		60~65		25		35~40	
8	三口圆底烧瓶	频发		60~65		25		35~40	
9	三口圆底烧瓶	频发		60~65		25		35~40	
10	三口圆底烧瓶	频发		60~65		25		35~40	
11	三口圆底烧瓶	频发		60~65		25		35~40	
12	三口圆底烧瓶	频发		60~65	減振、厂	25		35~40	
13	三口圆底烧瓶	频发		60~65	房墙体	25		35~40	
14	单口烧瓶	频发	类比法	60~65	房 垣 伊 隔音	25	类比法	35~40	2400
15	单口烧瓶	频发		60~65	1915日	25		35~40	
16	单口烧瓶	频发		60~65		25		35~40	
17	单口烧瓶	频发		60~65		25		35~40	
18	烧杯	频发		60~65		25		35~40	
19	烧杯	频发		60~65		25		35~40	
20	烧杯	频发		60~65		25		35~40	
21	蒸馏头	频发		60~65		25		35~40	
22	尾接管	频发		60~65		25		35~40	
23	温度计	频发		60~65		25		35~40	
24	罗茨真空泵	频发		80~85		25		55~60	
25	循环水真空泵	频发		80~85		25		55~60	]
26	常温冷凝系统	频发		65~70		25		40~45	
27	空压机	频发		80~85		25		55~60	

28	纯水制备系统	频发	65~70	25	40~45	
29	50L 玻璃釜	频发	60~65	25	35~40	
30	气相色谱仪	频发	60~65	25	35~40	
31	数显阿贝折射仪	频发	60~65	25	35~40	
32	粘度计	频发	60~65	25	35~40	
33	拉力机	频发	65~70	25	40~45	
34	旋转蒸发器	频发	65~70	25	40~45	
35	电热鼓风干燥箱	频发	65~70	25	40~45	
36	凝胶色谱仪	频发	65~70	25	40~45	
37	老化箱	频发	65~70	25	40~45	
38	密闭型无转子硫变仪	频发	75~80	25	50~55	
39	超声波清洗器	频发	75~80	25	50~55	
40	可程式恒温恒湿实验机	频发	75~80	25	50~55	
41	集热式恒温加热磁力搅拌器	频发	65~70	25	40~45	
42	智能数显恒温水油浴锅	频发	65~70	25	40~45	
43	电子天平	频发	60~65	25	35~40	
44	数显电动搅拌器	频发	75~80	25	50~55	
45	冰柜	频发	60~65	25	35~40	<u> </u>
46	冷凝管	频发	60~65	25	35~40	<u> </u>
47	分水器	频发	60~65	25	35~40	<u> </u>
48	三口圆底烧瓶	频发	60~65	25	35~40	<u> </u>
49	三口圆底烧瓶	频发	60~65	25	35~40	
50	三口圆底烧瓶	频发	60~65	25	35~40	<u> </u>
51	三口圆底烧瓶	频发	60~65	25	35~40	<u> </u>
52	三口圆底烧瓶	频发	60~65	25	35~40	<u> </u>
53	三口圆底烧瓶	频发	60~65	25	35~40	]   <b> </b>
54	单口烧瓶	频发	60~65	25	35~40	<u> </u>
55	单口烧瓶	频发	60~65	25	35~40	<u> </u>
56	单口烧瓶	频发	60~65	25	35~40	<u> </u>
57	单口烧瓶	频发	60~65	25	35~40	<u> </u>
58	烧杯	频发	60~65	25	35~40	

59	烧杯	频发	60~65	25	35~40
60	<u></u> 烧杯		60~65	25	35~40
61	蒸馏头	频发	60~65	25	35~40
62	尾接管	频发	60~65	25	35~40
63	温度计	频发	60~65	25	35~40
64	集热式恒温加热磁力搅拌器	频发	65~70	25	40~45
65	数显电动搅拌器	频发	65~70	25	40~45
66	冷凝管	频发	60~65	25	35~40
67	分水器	频发	60~65	25	35~40
68	三口圆底烧瓶	频发	60~65	25	35~40
69	三口圆底烧瓶	频发	60~65	25	35~40
70	三口圆底烧瓶	频发	60~65	25	35~40
71	三口圆底烧瓶	频发	60~65	25	35~40
72	三口圆底烧瓶	频发	60~65	25	35~40
73	三口圆底烧瓶	频发	60~65	25	35~40
74	单口烧瓶	频发	60~65	25	35~40
75	单口烧瓶	频发	60~65	25	35~40
76	单口烧瓶	频发	60~65	25	35~40
77	单口烧瓶	频发	60~65	25	35~40
78	烧杯	频发	60~65	25	35~40
79	烧杯		60~65	25	35~40
80	烧杯		60~65	25	35~40
81	蒸馏头		60~65	25	35~40
82	尾接管		60~65	25	35~40
83			60~65	25	35~40
I	温度计				
84 >>= (1	冷却塔	频发	80~85	25	55~60

注: ①均为室内声源, 厂房结构为砖混, 噪声值监测位置为距离噪声源 1m 处;

噪声影响预测模式:噪声的衰减主要与声传播距离、空气吸收、阻挡物的反射屏障等因素有关,本项目将生产设备产生的噪声看做面源噪声,声源位于室内,噪声的衰减考虑墙壁、窗户的屏障和声传播距离的衰减。

②设备进行减振措施,其削减噪声值取 10dB(A),墙体隔声一般为 15~20dB(A),这里取 15dB(A),降噪效果为 25dB(A)。

①室内声源可采用等效室外声源声功率级法进行计算。设靠近开口处(或窗户)室内、室外某倍频带的志压级分别为  $L_{p1}$  和  $L_{p2}$ 。若声源所在室内声场为近似扩散声场,则室外的倍频带声压级可按公式近似求出:

$$L_{p2} = L_{p1} - (TL + 6)$$

式中: TL——隔墙(或窗户)倍频带的隔声量,dB(A)。预测时取 25dB。

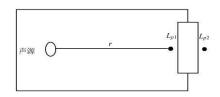



图 4-1 室内声源等效为室外声源图

也可按公式计算某一室内声源靠近转护结构处产生的倍频带声压级:

$$L_{\rm pl} = L_{\rm w} - 101 {\rm g} \left( \frac{Q}{4\pi r^2} + \frac{4}{R} \right)$$

式中:Q——指向性因数;通常对无指向性声源,当声源放在房间中心时,Q=1;当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4;当放在三面墙夹角处时,Q=8;

R——房间常;  $\mathbf{R} = \mathbf{S}\boldsymbol{\alpha}/(\mathbf{1}-\boldsymbol{\alpha})$ , S 为房间内表面面积,  $\mathbf{m}^2$ ;  $\boldsymbol{\alpha}$  为平均吸声系数;

r——声源到靠近转护结构某点处的距离, m;

然后按公式计算出所有室内声源在围护结构处产生的 i 倍频带叠加声压级:

$$L_{pli}(T) = 10 \lg \left( \sum_{J=1}^{N} 10^{0.1L_{plij}} \right)$$

式中: L_{pli}(T)——靠近围护结构处室内 N 个声源 i 倍频带的叠加声压级, dB;

L_{plij}——室内 j 声源 i 倍频带的声压级, dB;

N--室内声源总数;

在室内近似为扩散声场时,按下面公式计算出靠近室外围护结构处的声压级

$$L_{p2i}(T) = L_{pli}(T) - (TL_i + 6)$$

式中: L_{p2i}(T)——靠近围护结构处室外 N 个声源 i 倍频带的叠加声压级, dB;

TLi——围护结构 i 倍频带的隔声量, dB;

然后按公式将室外声源的声压级和透过面积换算成等效的室外声源,计算出中心位置于透声面积(S)处的等效声源的倍频带声功率级。

$$L_{\mathbf{w}} = L_{\mathbf{p}2}(T) + 10\lg s$$

然后按室外声源预测方法计处预测点处的 A 声级。

②距离衰减: L(r)=L(r₀)-20lg(r/r₀)

式中: ro——为点声源离监测点的距离, m

r——为点声源离预测点的距离, m

- ③屏障衰减 Ab: 本项目没有设置声屏障。
- ④声压的叠加:

$$L_p = 10 \lg \sum_{i=1}^{n} 10^{0.1L_{pi}}$$

L_p——各噪声源叠加总声压级, dB;

L_{ni}——各噪声源的声压级, dB。

利用模式可以模拟预测主要声源同时排放噪声在采取措施情况下对边界声环境质量叠加影响,本项目各种噪声经过衰减后,在厂界噪声值结果见下表。

表 4-10 噪声预测结果单位 dB(A)

** ** *** *** ** * * * * * * * * * * *							
厂界噪	声测点	西	北				
贡献值	昼间	32.4	33.6				

背景值	昼间	56.6	52.85			
叠加值	昼间	58.1	54.1			
标准值	昼间	65	65			
评价标	淮来源	GB1234	48-2008			
达标	情况	达标	达标			
注:由于厂界东面、南面为邻厂,无需进行预测。						

由预测结果可知,项目建成后,昼间厂界噪声能达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准值。因此,项目运行后噪声排放对周围环境影响较小。

环评要求企业采取进一步的噪声管理措施,主要是加强日常生产管理,包括:

- ①加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象;
- ②加强职工环保意识教育,提倡文明生产,防止人为噪声:
- ③物料及产品的运输尽量安排在白天进行,避免夜间噪声对周围环境的影响;
- ④对于厂区流动声源(汽车),要强化行车管理制度,设置降噪标准,严禁鸣号,进入厂区低速行驶,最大限度减少流动噪声源;
- ⑤高噪声工位工人佩戴防护用品,如耳塞、耳罩、头盔等,减少噪声对工人的伤害;
- ⑥禁止在夜间、午休期间进行生产活动。

通过以上管理措施的落实, 本项目对周围声环境的影响程度可降至最低程度。

#### (2) 噪声监测要求

根据《排污单位自行监测技术指南 总则》(HJ 819-2017)、《排污许可证申请与核发技术规范 总则》(HJ 942—2018)中相关要求,确定本项目噪声监测点位、监测因子、监测频次。本项目噪声监测计划详见下表。

#### 表 4-11 噪声监测要求

类别	监测点位	监测指标	监测频次	执行排放标准
噪声	厂界四周外1米	等效连续 A 声级	每季度1次	《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准

#### 4、固体废物

#### 表4-12 项目固体废物分析结果汇总表

序号	工序 固体	废物名称 固废属性	一般固体废物代码	产生量/t/a	处置量/t/a	最终去向
----	-------	-----------	----------	---------	---------	------

2     废气治理     废活性炭     危险废物     HW49 900-039-49     2.297     0       3     研发实验工序     实验室废液     危险废物     HW06 900-402-06     2.0     0     委托有处理资质单	立回收处理
3   研发实验工序   实验室废液   危险废物   HW06 900-402-06   2.0   0   委托有处理资质单	
	t单位处置
4 研发实验工序 废包装桶 危险废物 HW49 900-041-49 0.005 0	
5 员工生活 生活垃圾 / 1.5 0 环卫清运	

注:固体废物判定依据:《固体废物鉴别标准 通则》(GB 34330-2017);危险废物判定依据:《国家危险废物名录(2021年版)》;一般 固体废物代码判定依据:《一般固体废物分类与代码》(GB/T39198-2020)

#### (1) 固体废物产生量核算:

**员工生活垃圾:** 扩建项目新增劳动定员 10 人,员工生活垃圾产生量按 0.5kg/人·d 算,则其产生量为 1.5t/a,交由环卫清运处理。

**实验室固废:**项目内的实验室固废均包括碎器皿、废手套等。破碎的玻璃器皿和包装材料产生量为0.01t/a。拟进行分类收集、分类处理,收集后交由相关回收单位回收处理。

**废活性炭:** 本项目产生的有机废气采用二级活性炭吸附处理。活性炭碳箱相关设计量参照《佛山市生态环保局关于加强活性炭吸附工艺规范化设计建设与运行管理的通知(佛环函(2024)70号)》的附件1《活性炭吸附工艺规范化建设及运行管理工作指引》计算相关数据,具体设计如下。

表 4-13 二级活性炭装置参数一览表

设施名称 参数指标		主要参数	备注	
<i> </i>	2- H 1/4)	2301010		发实验有机废气 DA007
		设计风量 (m³/h)	10000	根据上文核算
		风速 V (m/s)	1.2	蜂窝炭低于 1.2m/s, 颗粒碳低于 0.6m/s
		过碳面积 S(m²)	2.315	S=Q/V/3600
		停留时间     0.5     停留时间=碳层厚度÷过滤风速(废气停留时)       W (抽屉宽度 m)     0.5     /       一级     L (抽屉长度 m)     0.6     /	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )	
二级				
活性	一级			
炭吸 74		活性炭箱抽屉个数 M(个)	8	M=S/W/L
附			H1:100	横向距离 H1:取 100-150mm;
			H2:100	纵向隔距离 H2: 取 50-100mm;
		抽屉间距(mm)	H3:200	活性炭箱内部上下底部与抽屉空间 H3: 取值 200-300mm;
			H4:500	
			H5:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm;

					进山园口近黑家园 IIE 版 500
			壮持同许	(00	进出风口设置空间 H5 取 500mm。
			装填厚度	600	装填厚度不宜低于 600mm
			活性炭箱尺寸(长*宽*高, mm)	L2300×W2100× H1800	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般 按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性 炭箱体积
			   活性炭装填体积 V	1.44	V 炭=M×L×W×D/10 ⁻⁹
			活性炭装填量 W(kg)	504	W (kg) =V 炭×ρ (蜂窝炭密度取 350kg/m³, 颗粒炭取 400kg/m³)
			设计风量(m³/h)		
				10000	根据上文核算
			风速 V (m/s)	1.2	蜂窝炭低于 1.2m/s,颗粒碳低于 0.6m/s
			过碳面积 S(m²)	2.315	S=Q/V/3600
			停留时间	0.5	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )
			W(抽屉宽度 m)	0.5	/
		二级	L (抽屉长度 m)	0.6	1
			活性炭箱抽屉个数 M(个)	8	M=S/W/L
				H1:100	横向距离 H1: 取 100-150mm;
			抽屉间距(mm)	H2:100	纵向隔距离 H2: 取 50-100mm;
				H3:200	活性炭箱内部上下底部与抽屉空间 H3:取值 200-300mm;
				H4:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm;
				H5:500	进出风口设置空间 H5 取 500mm。
			装填厚度	600	装填厚度不宜低于 600mm
			活性炭箱尺寸(长*宽*高, mm)	L2300×W2100× H1800	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般 按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性 炭箱体积
			活性炭装填体积 V	1.44	V 炭=M×L×W×D/10-9
			活性炭装填量 W (kg)	504	W (kg) =V 炭×ρ (蜂窝炭密度取 350kg/m³, 颗粒炭取 400kg/m³)
			二级活性炭箱装炭量(kg)		1008
				有机废气(LED 封装	胶生产、废水处理和实验室)DA001
	<i>→ 4π</i>		设计风量 (m³/h)	25000	根据上文核算
	二级		风速 V (m/s)	1.2	蜂窝炭低于 1.2m/s, 颗粒碳低于 0.6m/s
	活性	一级	过碳面积 S(m²)	5.787	S=Q/V/3600
	灰吸     附		停留时间	0.5	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )
	נוץ		W(抽屉宽度 m)	0.5	/

T (11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	1 0 5	, , ,
L (抽屉长度 m)	0.6	
活性炭箱抽屉个数 M(个)	20	M=S/W/L
	H1:100	横向距离 H1: 取 100-150mm;
	H2:100	纵向隔距离 H2: 取 50-100mm;
抽屉间距(mm)	H3:200	活性炭箱内部上下底部与抽屉空间 H3: 取值 200-300mm;
	H4:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm;
	H5:500	进出风口设置空间 H5 取 500mm。
装填厚度	600	装填厚度不宜低于 600mm
活性炭箱尺寸(长*宽*高,	L4400×W2100×	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般
mm)	H1800	按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性
IIIII)	111000	炭箱体积
活性炭装填体积 V	3.6	V 炭=M×L×W×D/10 ⁻⁹
活性炭装填量 W (kg)	1260	W (kg) =V 炭×ρ (蜂窝炭密度取 350kg/m³, 颗粒炭取 400kg/m³)
设计风量 (m³/h)	25000	根据上文核算
风速 V (m/s)	1.2	蜂窝炭低于 1.2m/s,颗粒碳低于 0.6m/s
过碳面积 S(m²)	5.787	S=Q/V/3600
停留时间	0.5	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )
W(抽屉宽度 m)	0.5	1
L(抽屉长度 m)	0.6	1
活性炭箱抽屉个数 M(个)	20	M=S/W/L
	H1:100	横向距离 H1: 取 100-150mm;
74	H2:100	纵向隔距离 H2: 取 50-100mm;
抽屉间距(mm)	H3:200	活性炭箱内部上下底部与抽屉空间 H3: 取值 200-300mm;
	H4:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm;
	H5:500	进出风口设置空间 H5 取 500mm。
装填厚度	600	装填厚度不宜低于 600mm
活性炭箱尺寸(长*宽*高,	I 4400 \/ W2100 \/	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般
	L4400×W2100×	按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性
mm)	H1800	炭箱体积
活性炭装填体积 V	3.6	V 炭=M×L×W×D/10-9
活性炭装填量 W (kg)	1260	W (kg) =V 炭×ρ (蜂窝炭密度取 350kg/m³, 颗粒炭取 400kg/m³)
二级活性炭箱装炭量(kg)		2520

				原有项目硅油加	口热、挤出废气 DA005
			设计风量 (m³/h)	15000	根据上文核算
			风速 V(m/s)	1.2	蜂窝炭低于 1.2m/s, 颗粒碳低于 0.6m/s
			过碳面积 S(m²)	3.472	S=Q/V/3600
			停留时间	0.5	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )
			W(抽屉宽度 m)	0.5	1
			L(抽屉长度 m)	0.6	/
			活性炭箱抽屉个数 M(个)	12	M=S/W/L
	-	一级	抽屉间距(mm)	H1:100 H2:100 H3:200	横向距离 H1:取 100-150mm; 纵向隔距离 H2:取 50-100mm; 活性炭箱内部上下底部与抽屉空间 H3:取值 200-300mm;
				H4:500 H5:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm; 进出风口设置空间 H5 取 500mm。
			装填厚度	600	装填厚度不宜低于 600mm
	二级		活性炭箱尺寸(长*宽*高, mm)	L2300×W2400× H2000	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性炭箱体积
I II '	炭吸 附		活性炭装填体积 V	2.16	V 炭=M×L×W×D/10-9
	PIJ		活性炭装填量 W(kg)	756	W (kg) =V 炭×ρ (蜂窝炭密度取 350kg/m³, 颗粒炭取 400kg/m³)
			设计风量 (m³/h)	15000	根据上文核算
			风速 V (m/s)	1.2	蜂窝炭低于 1.2m/s, 颗粒碳低于 0.6m/s
			过碳面积 S(m²)	3.472	S=Q/V/3600
			停留时间	0.5	停留时间=碳层厚度÷过滤风速(废气停留时间保持 0.5-1s; )
			W(抽屉宽度 m)	0.5	/
			L(抽屉长度 m)	0.6	/
	-	二级	活性炭箱抽屉个数 M(个)	12	M=S/W/L
			抽屉间距(mm)	H1:100 H2:100 H3:200	横向距离 H1: 取 100-150mm; 纵向隔距离 H2: 取 50-100mm; 活性炭箱内部上下底部与抽屉空间 H3: 取值 200-300mm;
				H4:500 H5:500	炭箱抽屉按上下两层排布,上下层距离 H4 宜取值 400-600mm; 进出风口设置空间 H5 取 500mm。
			装填厚度	600	装填厚度不宜低于 600mm

	活性炭箱尺寸(长*宽*高, mm)	L2300×W2400× H2000	根据 M、H1、H2 以及炭箱抽屉间间距,结合活性炭箱抽屉的排布(一般 按矩阵式布局)等参数,加和分别得到炭箱长、宽、高参数,确定活性 炭箱体积
	活性炭装填体积 V	2.16	V 炭=M×L×W×D/10 ⁻⁹
	活性炭装填量 W (kg)	756	W(kg)=V 炭×ρ(蜂窝炭密度取 350kg/m³,颗粒炭取 400kg/m³)
	二级活性炭箱装炭量(kg)		1512

参考《广东省生态环境厅关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函(2023)538号)表 3.3-3 中活性炭吸附比例 建议取值 15%,根据《佛山市生态环保局关于加强活性炭吸附工艺规范化设计建设与运行管理的通知佛环函(2024)70号)》的附件 1《活性 炭吸附工艺规范化建设及运行管理工作指引》计算,则活性炭更换周期如下。

				WITH A PARTICIPATION OF THE PA				
	设施名称	M(活性炭	S: 动态吸附量,%	C一活性炭削减的	Q—风量,单位	t-作业时间,	活性炭更换周期 T(d)	实际更换
	以 <b>旭</b> 石你	的用量,kg)	(一般取值 15%)	VOCs 浓度,mg/m³	m ³ /h	单位 h/d。	$= M \times S/C/10^{-6}/Q/t_{\circ}$	频次/a
	DA007	1008	15%	10.644	10000	8	177.565	2
	DA001	2520	15%	31	25000	24	20.32258065	17
	DA005	1512	15%	19.53	15000	24	32.25806452	11

表 4-14 项目活性炭更换周期一览表

通过计算本次扩建项目活性炭更换量为 1.008×2+0.281=2.297t/a(含吸附的有机废气),原有项目 DA001 活性炭更换量为 2.52×17+5.58=48.42t/a(含吸附的有机废气),原有项目 DA005 活性炭更换量为 1.512×11+2.1=18.732t/a(含吸附的有机废气)。废活性炭属于《国家危险废物名录》(2021 年版)中的 HW49 其他废物-非特定行业 900-039-49 烟气、VOCs 治理过程(不包括餐饮行业油烟治理过程)产生的废活性炭,收集后定期交由有危废处理资质的公司处置。

**实验室废液(含清洗废液):**项目实验室为产品检验和研发,实验过程产生的实验废液主要含有机树脂、甲苯等有机溶剂和实验清洗废液,总产生量约 2t/a,属于《国家危险废物名录》(2021 年版)中的 HW06 废有机溶剂与含有机溶剂废物,废物代码为 900-402-06,定期交由有危险废物处理资质的单位回收处理。

**废包装桶:** 本扩建项目药剂使用过程会产生废包装桶,废包装桶产生量约 0.005t/a,废包装材料属于《国家危险废物名录》(2021 年版)中的 HW49 废物,废物代码为 900-041-49,定期交由有危险废物处理资质的单位回收处理。

#### (2) 危险废物汇总及建设项目危险废物贮存场所基本情况:

本项目依托现有固废暂存场所,本项目危废仓面积为99m²,剩余贮存能力为20t,本项目危废年产生量为2.793t/a,仅占剩余储存容量的13.965%,因此,本项目依托现有固废暂存间具备可行性。

#### 表 4-15 项目危险废物汇总表

序号	危险废物名称	危险废 物类别	危险废物 代码	产生 量 t/a	产生工序及装 置	形态	主要成分	有害成分	产废 周期	危险特 性	污染防治措施
1	废活性炭	HW49	900-039-49	2.297	废气治理	固态	有机废气	有机废气	毎1年	T	设置危废仓暂存,
2	实验室废液(含 清洗废液)	HW06	900-402-06	2	研发实验工序	液态	有机物	有机物	毎1年	T/I/R	交由有资质的危 废处置单位处置
3	废包装桶	HW49	900-041-49	0.005	研发实验工序	固态	有机物	有机物	每1年	T/In	及处且平位处且.

#### | 注: T: 毒性; I: 易燃性; C: 腐蚀性; In: 感染性; R: 反应性

#### 表 4-16 建设项目危险废物贮存场所基本情况

贮存场所(设施)名称	危险废物名称	危险废物类别	危险废物代码	占地面积	贮存方式	贮存能力	贮存周期	
	废活性炭	HW49	900-039-49		密封容器	10t		
危废仓	实验室废液(含清洗废液)	HW06	900-402-06	$5m^2$	密封容器	15t	1年	
	废包装桶	HW49	900-041-49		隔离储存	5t		

#### (3) 环境管理要求:

#### 一般固体废物处置措施:

根据新修订的《中华人民共和国固体废物污染环境防治法》第三章工业固体废物,工业固体废物处置措施具体要求如下:

- ①应当建立健全工业固体废物产生、收集、贮存、运输、利用、处置全过程的污染环境防治责任制度,建立工业固体废物管理台账,如实记录产生工业固体废物的种类、数量、流向、贮存、利用、处置等信息,实现工业固体废物可追溯、可查询,并采取防治工业固体废物污染环境的措施。禁止向生活垃圾收集设施中投放工业固体废物。
- ②产生工业固体废物的单位委托他人运输、利用、处置工业固体废物的,应当对受托方的主体资格和技术能力进行核实,依法签订书面合同,在合同中约定污染防治要求。
- ③应当依法实施清洁生产审核,合理选择和利用原材料、能源和其他资源,采用先进的生产工艺和设备,减少工业固体废物的产生量,降低工业固体废物的危害性。

- ④应当取得排污许可证,向所在地生态环境主管部门提供工业固体废物的种类、数量、流向、贮存、利用、处置等有关资料,以及减少工业固体废物产生、促进综合利用的具体措施,并执行排污许可管理制度的相关规定。
- ⑤一般固废仓需设置在密闭独立房间内,四周和顶部均围蔽,地面采用坚固、防渗、耐腐蚀的材料建造,设计堵截泄漏的裙脚、地沟等设施。
- ⑥产生工业固体废物的单位终止的,应当在终止前对工业固体废物的贮存、处置的设施、场所采取污染防治措施,并对未处置的工业固体废物作出妥善处置,防止污染环境。产生工业固体废物的单位发生变更的,变更后的单位应当按照国家有关环境保护的规定对未处置的工业固体废物及其贮存、处置的设施、场所进行安全处置或者采取有效措施保证该设施、场所安全运行。变更前当事人对工业固体废物及其贮存、处置的设施、场所的污染防治责任另有约定的,从其约定;但是,不得免除当事人的污染防治义务。

#### 危险废物处置措施:

本项目产生的危险废弃物不得擅自倾倒、堆放,需按照危险废物的特性分类收集、贮存、运输、处置,并与非危险废物分开贮存。建设单位对自身产生的危险废物进行全过程的管理,临时贮存设施的选址、设计、运行、安全防护、监测和关闭,将严格按照《危险废物贮存污染控制标准》(GB18597-2023)的相关要求执行。本项目危险固体废物暂时存放在危险废物暂存间,并做好相关标记。主要措施如下:

- ①严格执行《危险废物转移联单管理办法》和《危险废物经营许可证管理办法等》,对进厂、使用、出厂的危险废物量进行统计,并定期 向环境保护管理部门报送;
  - ②危险废物临时贮存库地面与裙角要用坚固、防渗的材料建造,建筑材料必须与危险废物相容;
  - ③危险废物临时贮存库必须有防腐蚀的硬化地面,且表面无裂隙;
  - ④危险废物堆放基础防渗,防渗层为至少2毫米厚高密度聚乙烯,渗透系数≤10-10厘米/秒;
  - ⑤设施内要有安全照明和观察窗口;
- ⑥危险废物临时贮存场要防风、防雨、防晒;同时,建设单位应按《中华人民共和国固体废物污染环境防治法》的规定向上级固体废物管理中心如实申报本项目固体废物产生量、拟采取的处置措施及去向,并按该中心的要求对本项目产生的固体废物特别是危险废物进行全过程严格管理和安全处置。

根据新修订的《中华人民共和国固体废物污染环境防治法》第六章危险废物,危险废物处置措施具体要求如下:

- ①对危险废物的容器和包装物以及收集、贮存、运输、利用、处置危险废物的设施、场所,应当按照规定设置危险废物识别标志。
- ②应当按照国家有关规定制定危险废物管理计划;建立危险废物管理台账,如实记录有关信息,并通过国家危险废物信息管理系统向所在地生态环境主管部门申报危险废物的种类、产生量、流向、贮存、处置等有关资料。前款所称危险废物管理计划应当包括减少危险废物产生量和降低危险废物危害性的措施以及危险废物贮存、利用、处置措施。危险废物管理计划应当报产生危险废物的单位所在地生态环境主管部门备案。产生危险废物的单位已经取得排污许可证的,执行排污许可管理制度的规定。
  - ③应当按照国家有关规定和环境保护标准要求贮存、利用、处置危险废物,不得擅自倾倒、堆放。
  - ④禁止将危险废物提供或者委托给无许可证的单位或者其他生产经营者从事收集、贮存、利用、处置活动。
- ⑤收集、贮存危险废物,应当按照危险废物特性分类进行。禁止混合收集、贮存、运输、处置性质不相容而未经安全性处置的危险废物。 贮存危险废物应当采取符合国家环境保护标准的防护措施。禁止将危险废物混入非危险废物中贮存。
- ⑥收集、贮存、运输、利用、处置危险废物的场所、设施、设备和容器、包装物及其他物品转作他用时,应当按照国家有关规定经过消除 污染处理,方可使用。
- ⑦产生、收集、贮存、运输、利用、处置危险废物的单位,应当依法制定意外事故的防范措施和应急预案,并向所在地生态环境主管部门和其他负有固体废物污染环境防治监督管理职责的部门备案。
- ⑧因发生事故或者其他突发性事件,造成危险废物严重污染环境的单位,应当立即采取有效措施消除或者减轻对环境的污染危害,及时通报可能受到污染危害的单位和居民,并向所在地生态环境主管部门和有关部门报告,接受调查处理。
- ⑨重点危险废物集中处置设施、场所退役前,运营单位应当按照国家有关规定对设施、场所采取污染防治措施。退役的费用应当预提,列入投资概算或者生产成本,专门用于重点危险废物集中处置设施、场所的退役。具体提取和管理办法,由国务院财政部门、价格主管部门会同国务院生态环境主管部门规定。

#### 5、地下水、土壤

#### (1) 污染源、污染物类型和污染途径

地下水、土壤污染方式可分为直接污染和间接污染两种。直接污染是主要方式,具体指污染物直接进入含水层、土壤,而且在污染过程中,污染物的性质基本不变。间接污染是指并非由于污染物直接进入含水层、土壤而引起,而是由于污染物作用于其他物质,使这些物质中的某些

成分进入地下水、土壤造成的。根据类比分析,本项目对地下水、土壤的污染影响以直接污染为主,可能导致地下水、土壤污染的情景为废气排放、污水泄漏、物料泄漏、危险废物贮存期间的渗滤液下渗。

#### ①废气排放

废气排放口和厂区无组织排放的污染物为挥发性有机物,以甲苯、非甲烷总烃、TVOC 为评价指标。根据原辅材料的成分分析,本项目原辅材料均不涉及重金属、持久性有机污染物。结合《土壤环境——建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)、《土壤环境——农用地土壤污染风险管控标准(试行)》(GB 15618-2018)分析,挥发性有机物属于气态污染物,一般不考虑沉降,而且污染物难溶于水,也不会通过降水进入土壤。

#### ②危险废物渗滤液下渗

危险废物采用密闭容器封存,内部地面涂刷防渗地坪漆和配套围堰后,贮存过程产生的渗滤液不会通过地表漫流、下渗的途径进入地表水、 土壤。

#### (2) 分区防控

根据《环境影响评价技术导则——地下水环境》(HJ 610-2016)"表 7 地下水污染防渗分区参照表"的说明,防渗分区分为重点防渗区、一般防渗区和简易防渗区。本项目不涉及重金属和持久性污染物,危废间属于一般防渗区,厂区其他区域属于简易防渗区。相应地,物料贮存区、危险废物贮存间等区域在地面硬底化、涂刷防渗地坪漆的基础上增加围堰,并做好定期维护。厂区其余区域的地面进行地面硬底化即可。采取前文所述污染物收集治理措施和上述防渗措施后,不会对地下水、土壤环境质量造成显著的不利影响。

**									
防渗分区	场地	防渗技术要求							
重点污染防渗区	危废间	等效黏土防渗层 Mb≥6.0m,K≤1×10 ⁻⁷ cm/s;或参照 GB16889 执行							
一般污染防渗区	原料堆放区后、化粪池	等效黏土防渗层 Mb≥1.5m,K≤1×10 ⁻⁷ cm/s;或参照 GB16889 执行							
非污染防渗区	生产车间其他地面区域	一般地面硬化							

表 4-17 分区防控措施表

#### (3) 跟踪监测

本项目的建设不涉及地下水开采,不会影响当地地下水水位,不会产生地面沉降、岩溶塌陷等不良水文地质灾害;原料堆放区后、危险废物贮存间均位于现成厂房内部,落实防渗措施后,也不会通过地表漫流、下渗的途径进入土壤。通过加强生产运行管理,做好防渗漏工作,在

正常运行工况下,不会对周边地下水、土壤环境质量造成显著的不利影响,可不作地下水、土壤跟踪监测。

#### 6、生态

本项目用地范围内不存在生态环境保护目标,不需要进行生态现状调查。

#### 7、环境风险

#### (1) 危险物质数量与临界量比值(Q)

原有项目原辅材料存放于原料仓,本扩建项目使用的原材料存放于研发楼内,原料仓和研发楼位于不同建筑物,不在同一个风险管控单元,当不同的风险单元之间没有直接的关联或影响时,它们可以被视为独立的单元,不需要进行额外的风险核算。因此,本次环评仅对研发楼中风险物质进行分析。参照《建设项目环境风险评价技术导则》(HJ169-2018),本项目涉及的物质中,列入《建设项目环境风险评价技术导则》(HJ169-2018)附录 B "表 B.1 重点关注的危险物质及临界量"有甲苯、溴、乙酸、甲醇;列入"表 B.2 其他危险物质临界量推荐值"中所述的三类物质(健康危险急性毒性物质(类别 1)、健康危险急性毒性物质(类别 2、类别 3)、危害水环境物质(急性毒性类别 1))有正硅酸甲酯;本项目涉及但未列入 HJ169-2018 附录 B "表 B.1 重点关注的危险物质及临界量"中的物质,不涉及"表 B.2 其他危险物质临界量推荐值"中所述的三类物质(健康危险急性毒性物质(类别 1)、健康危险急性毒性物质(类别 2、类别 3)、危害水环境物质(急性毒性类别 1))有苯基三甲氧基硅烷、二苯基二甲氧基硅烷、四甲基二乙烯基二硅氧烷、四甲基二硅氧烷、三氟甲磺酸、碳酸氢钠、氢氧化钾、乙醇(酒精)。各危险物质数量与临界量比值(Q)详见下表。

表 4-17 风险物质贮存情况及临界量比值计算(Q)

l —										
	序 号	风险物质 名称	最大存储 量 q (t)		取值依据	临界量 Q(t)	q/Q			
	ク	石你	里り(い			Q (t)				
	1	甲苯	0.3	易燃液体,类别 2;皮肤腐蚀/刺激,类别 2;生殖毒性,类别 2;特异性靶器官毒性-一次接触,类别 3(麻醉效应);特异性靶器官毒性-反复接触,类别 2*;吸入危害,类别 1;危害水生环境-急性危害,类别 2;危害水生环境-长期危害,类别 3	《建设项目环境风险评价技术导则》 (HJ169-2018) 附录 B 表 B.1 序号 165	10	0.03			
	2	正硅酸甲 酯	0.009	易燃液体,类别 2;急性毒性-吸入,类别 1;严重 眼损伤/眼刺激,类别 1;特异性靶器官毒性-一次接 触,类别 2;特异性靶器官毒性-反复接触,类别 1	《建设项目环境风险评价技术导则》 (HJ169-2018)附录 B 表 B.2"健康危险急性毒性物质(类别 1)	5	0.001			
	3	溴	0.25	急性毒性-吸入,类别 2*;皮肤腐蚀/刺激,类别 1A;	《建设项目环境风险评价技术导则》	2.5	0.1			

			严重眼损伤/眼刺激,类别 1; 危害水生环境-急性危害,类别 1	(HJ169-2018) 附录 B.1 序号 325		
4	乙酸	0.001	易燃液体,类别3;皮肤腐蚀/刺激,类别1A; 严重眼损伤/眼刺激,类别1	《建设项目环境风险评价技术导则》 (HJ169-2018) 附录 B表 B.1 序号 357	10	0.000
5	甲醇	0.001	易燃液体,类别 2;急性毒性-经口,类别 3*;急性毒性-经皮,类别 3*;急性毒性-吸入,类别 3*;特异性靶器官毒性-一次接触,类别 1	《建设项目环境风险评价技术导则》 (HJ169-2018) 附录 B表 B.1 序号 357	10	0.000
合 计	-	-	-	-	-	0.132

因此 Q=0.132<1。

#### (2) 有毒有害和易燃易爆等危险物质和风险源分布情况及可能影响途径

本项目有毒有害危险物质为甲苯、溴、正硅酸甲酯、乙酸、甲醇等,均暂存于实验室原料仓,厂区内所有场区均已采取硬底化及严格防腐 防渗措施,基本上不存在影响途径。

#### (3) 环境风险防范措施及应急要求

#### 原料泄漏风险防范措施

- ①制定严格的生产操作规程,加强作业工人的安全教育,杜绝工作失误造成的事故;
- ②在车间和化学品的明显位置张贴禁用明火的告示;
- ③生产车间必须严禁烟火,应安装火灾报警系统、可燃气体检测报警装置以及有毒气体检测报警系统,并配备相应的消防器材,灭火砂、 抹布等。
  - ④按照相关要求规范对原辅材料的使用、贮存及管理过程,加强对员工的教育培训。
- ⑤危废仓地面做防渗漏处理和设置底盘;危废的存放设置明显标志,储存场所必须采取硬底化处理以及遮雨、防渗、防漏措施;并由专人管理,出入库应当进行核查登记,并定期检查。同时按照相关法律法规将危废物交有相关资质单位处理,做好生产商的管理,并按《危险废物转移联单管理办法》做好转移记录。

#### 废气事故排放风险防范措施

建设单位应认真做好设备的保养,定期维护、保修工作,使处理设施达到预期效果。为确保不发生事故性废气排放,建议建设单位采取一定的事故性防范保护措施:

- ①各生产环节严格执行生产管理的有关规定,加强设备的检修及保养,提高管理人员素质,并设置机器事故应急措施及管理制度,确保设备长期处于良好状态,使设备达到预期的处理效果。定期对设备和处理设施进行维护保养和维修,避免因设备故障引起事故发生。
- ②现场作业人员定时记录废气处理状况,如对废气处理设施的抽风机等设备进行点检工作,并派专人巡视,遇不良工作状况立即停止车间相关作业,维修正常后再开始作业,杜绝事故性废气直排,并及时呈报单位主管。待检修完毕再通知生产车间相关工序。
  - ③预留足够的强制通风口机设施,车间正常换气的排风口通过风管经预留烟道引至楼顶排放。
  - ④治理设施等发生故障,应及时维修,如情况严重,应停止生产直至系统运作正常。
  - ⑤定期对废气排放口的污染物浓度进行监测,加强环境保护管理。

#### 废水事故排放风险防范措施

项目废水处理站发生风险事故或污水管道破裂,将对周围环境产生较大的影响。企业应当制定完善的管理制度及相应的应急处理措施,保证废水处理系统发生故障时能及时作出反应及有效的应对,如建设事故应急池,用以收集事故状态下的废水。水处理系统恢复正常运转后再向外界排放;在工艺设计上采用自动装置,当发生紧急停电时,废水出水口自动关闭,防止废水外排,杜绝废水的事故排放。

项目收集主管另一头连接事故应急池,设阀门控制以及相应提升泵,事故池启用时把事故池一端阀门打开,废水排进事故池储存,事故排除后再利用提升泵通过收集主管把废水泵至污水处理厂处理。

#### 火灾引发的伴生/次生污染物排放的防范措施

- ①通过视频监控、可燃气体报警器报警或现场巡检等发现初期火灾,立即报告管辖范围内车间领导,车间领导指派现场处置人员进行监控, 安全消防人员使用干粉灭火器等灭火器材灭火,火情解除后,现场处置人员收集火灾现场残留物,按照危险废物处理。
- ②若火情较大,需要动用消防栓等灭火器材,上报公司应急指挥中心,指挥中心指派现场处置组人员赴现场。现场处置组关闭雨水总排口截止阀,开启雨水井抽水泵,将消防废水抽往事故水池,保证消防废水不流出厂外;后勤保障组准备好发电机、抽水泵、管道等应急物资,保障应急措施有效启动的条件;通讯联络组及应急疏散组根据火势情况通知转移疏散相关人员,确保人员安全。
  - ③火情非常严重,火灾、爆炸、污染物扩散的处置已经不能由现场的应急小组来实现,企业立即请求开发区外部应急救援力量支援。在相

关指挥人员未到之前,公司应采取相应的应急措施(全厂警报,全部人员撤离等),在区应急指挥人员到位后公司协助开发区政府指挥部人员做好现场应急与处置工作。

如混有火灾洗消水的废水外排,建设单位应在第一时间指派物资保障组和现场处置组在外排口处用沙袋封堵,将堵截的事故废水泵入事故水池,同时立即上报政府管理部门,政府管理部门到事件现场后,建设单位要听从其指令,协助现场应急。应急监测组协助环保局组织监测流出厂界的事故废水,提供相应的污染数据。在火灾洗消水流经区域,应对下游雨水泵站、地表水和地下水环境进行监测,密切关注事件对周围居民用水的影响。

#### 8、电磁辐射

本项目不涉及电磁辐射。

### 五、环境保护措施监督检查清单

内容要素	排放口(编 号、名称)/ 污染源	污染物 项目	环境保护措施	执行标准					
大气环境	研发实验有 机废气 DA007	甲苯、非 甲烷总、 TVOC	经通风柜收集后引至 "二级活性炭吸附"处理 后经管道引至15m排气 筒 DA007 排放	《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 1 挥发性有机物排放限值和表 3 厂区内VOCs 无组织排放限值(待国家污染物监测方法标准发布后实施 TVOC限值,TVOC限值未实施前执行NMHC的排放限值)					
	油烟废气 DA004 油烟		通过油烟净化装置处理 后由专用烟管道 DA004 引至屋顶排放	《饮食业油烟排放标准》 (GB18483-2001)最高允许排放浓度					
	厂区内	非甲烷 总	加强车间密闭化	《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)表 3 厂区内 VOCs 无组织排放限值					
	生活污水排 放口 DW001	CODcr、 SS、 BOD ₅ 、 氨氮、动 植物油	生活污水依托现有三级 化粪池、隔油隔渣池预 处理后通过市政管网排 入江海区污水处理厂处 理,尾水排入麻园河	广东省《水污染物排放限值》 (DB44/26-2001)二时段三级标准和 江海区污水处理厂进水标准较严者					
地表水环境	生产废水排 放口 DW002	CODer、 BOD5、 SS、氨氮	实验室废水、纯水制备 浓水引至现有自建污水 处理设施处理后通过市 政管网排入江海区污水 处理厂处理,尾水排入 麻园河	《城市污水再生利用 工业用水水 质》(GB/T19923-2005)中工艺与产 品用水的水质标准、广东省地方标准 《水污染物排放限值》 (DB4426-2001)第二时段一级标准 与《合成树脂工业污染物排放标准》 (GB31572-2015)表 1 水污染物排放 限值(直接排放)、江海污水处理厂 进水水质标准的较严者					
声环境	生产设备	<b>分噪声</b>	消声减振	《工业企业厂界环境噪声排放标准 (GB 12348-2008)3 类标准					
电磁辐射	本项目不涉及	<b>电磁辐射</b>							
固体废物			文单位回收处置; 废包装桶交由有危险废物	勿处理资质单位处置。					
土壤及地 下水污染 防治措施	本项目固废堆放场所均要求进行地面硬化固废堆场严格按照《危险废物贮存污染控制标准》(GB18597-2023)和《危险废物填埋污染控制标准》有关规范设计。								
生态保护 措施	本项目用地范围内不存在生态环境保护目标。								
环境风险 防范措施									
其他环境 管理要求	建设项目安全设施必须与主体工程同时设计、同时施工、同时投入生产和使用。 按环评及《排污单位自行监测指南总则》HJ819-2017的要求开展日常废水、废气监测。执行排污许可管理制度。按证排污								

稳定达标排放。建设单位台账应真实记录基本信息、污染防治设施运行管理信息、监测记录信息及其他环境管理信息;台账应按照电子化储存和纸质储存两种形式同步管理,台账保持5年以上备查。

### 六、结论

综上所述,项目符合江门市江海区的总体规划,也符合江海区的环境保护规划。 建设单位如能按照"三同时"制度,落实本报告表建议的污染治理建设措施,加强 污染治理设施的运行管理,则可确保污染物达标排放,不对周围环境造成严重影响, 不造成生态破坏。

本项目最终执行的污染物排放总量控制指标由当地生态环境行政主管部门分配,企业应严格执行污染物排放总量控制,不得超过当地生态环境行政主管部门分配与核定的总量控制指标。

因此,本项目的选址和建设从环保角度来看是可行的。

## 附表

# 建设项目污染物排放量汇总表

项目 分类	目    污染物名称		现有工程 排放量(固体废 物产生量)①	现有工程 许可排放量 ②	在建工程 排放量(固体废 物产生量)③	本项目 排放量(固体废 物产生量)④	以新 <del>带老</del> 削减量 (新建项目不填) ⑤	本项目建成后 全厂排放量(固体 废物产生量)⑥	变化量⑦
	挥发性有机物		2.544	0	0	0.199	0	2.743	+0.199
		甲苯	0.360	0	0	0.00003	0	0.36003	+0.00003
		甲醇	0.726	0	0	0	0	0.726	+0
废气	_	氧化硫	0.48	0	0	0	0	0.48	+0
	氮	氧化物	2.344	0	0	0	0	2.344	+0
	E 7		2.436	0	0	0	0	2.436	+0
		油烟		0	0	0.00001	0	0.01871	+0.00001
	生活污水	水量	5619.6	0	0	135	0	5754.6	+135
		$\mathrm{COD}_{\mathrm{Cr}}$	0.941	0	0	0.030	0	0.971	+0.03
		BOD ₅	0.701	0	0	0.014	0	0.715	+0.014
		SS	0.594	0	0	0.014	0	0.608	+0.014
		氨氮	0.078	0	0	0.001	0	0.079	+0.001
		动植物油	0.142	0	0	0.001	0	0.143	+0.001
废水	生产废水	水量	6328.36	0	0	80	0	6408.36	+80
		$\mathrm{COD}_{\mathrm{Cr}}$	0.221	0	0	0.003	0	0.224	+0.003
		BOD ₅	0.115	0	0	0.001	0	0.116	+0.001
		SS	0.112	0	0	0.002	0	0.114	+0.002
		氨氮	0.0174	0	0	0.0001	0	0.0175	+0.0001
		甲苯	0.00002	0	0	0	0	0.00002	+0
		TOC	0.091	0	0	0	0	0.091	+0

	生化污泥	16.5	0	0	0	0	16.5	+0
	集尘器粉尘	55.269	0	0	0	0	55.269	+0
一般工	沉降在车间内粉尘	8.146	0	0	0	0	8.146	+0
业固体	废磁棒	0.024	0	0	0	0	0.024	+0
废物	废包装材料	2	0	0	0	0	2	+0
	废粉 (不合格品)	5	0	0	0	0	5	+0
	实验室固废	0	0	0	1	0	1	+1
	釜渣	0.9	0	0	0	0	0.9	+0
	废矿物油、含油抹布	0.5	0	0	0	0	0.5	+0
	废水处理废包装	0.1	0	0	0	0	0.1	+0
	废离子交换树脂	0.3	0	0	0	0	0.3	+0
	气浮、初沉污泥	95	0	0	0	0	95	+0
危险废	废活性炭 (废气处理)	11.14	0	0	2.297	0	13.437	+2.297
物	废活性炭 (废水处理)	9.9	0	0	0	0	9.9	+0
	废有机溶剂(废气处理)	127.128	0	0	0	0	127.128	+0
	废膜组件	0.15	0	0	0	0	0.15	+0
	实验室废液 (含清洗废液)	0.3	0	0	2	0	2.3	+2.0
	活性炭脱附废催化剂	1.15	0	0	0	0	1.15	+0
	废包装桶	7.328	0	0	0.005	0	7.333	+0.005

注: ⑥=①+③+④-⑤; ⑦=⑥-①